IDEAS home Printed from
   My bibliography  Save this article

Static hedging and pricing American knock-in put options


  • Chung, San-Lin
  • Shih, Pai-Ta
  • Tsai, Wei-Che


This paper extends the static hedging portfolio (SHP) approach of Derman et al. (1995) and Carr et al. (1998) to price and hedge American knock-in put options under the Black–Scholes model and the constant elasticity of variance (CEV) model. We use standard European calls (puts) to construct the SHPs for American up-and-in (down-and-in) puts. We also use theta-matching condition to improve the performance of the SHP approach. Numerical results indicate that the hedging effectiveness of a bi-monthly SHP is far less risky than that of a delta-hedging portfolio with daily rebalance. The numerical accuracy of the proposed method is comparable to the trinomial tree methods of Ritchken (1995) and Boyle and Tian (1999). Furthermore, the recalculation time (the term is explained in Section 1) of the option prices is much easier and quicker than the tree method when the stock price and/or time to maturity are changed.

Suggested Citation

  • Chung, San-Lin & Shih, Pai-Ta & Tsai, Wei-Che, 2013. "Static hedging and pricing American knock-in put options," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 191-205.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:1:p:191-205
    DOI: 10.1016/j.jbankfin.2012.08.019

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Peter Carr & Katrina Ellis & Vishal Gupta, 1998. "Static Hedging of Exotic Options," Journal of Finance, American Finance Association, vol. 53(3), pages 1165-1190, June.
    2. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    3. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    4. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    5. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    6. Figlewski, Stephen & Gao, Bin, 1999. "The adaptive mesh model: a new approach to efficient option pricing," Journal of Financial Economics, Elsevier, vol. 53(3), pages 313-351, September.
    7. San-Lin Chung & Pai-Ta Shih, 2007. "Generalized Cox-Ross-Rubinstein Binomial Models," Management Science, INFORMS, vol. 53(3), pages 508-520, March.
    8. Johannes Siven & Rolf Poulsen, 2009. "Auto-static for the people: risk-minimizing hedges of barrier options," Review of Derivatives Research, Springer, vol. 12(3), pages 193-211, October.
    9. M. H. A. Davis & W. Schachermayer & R. G. Tompkins, 2001. "Pricing, no-arbitrage bounds and robust hedging of instalment options," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 597-610.
    10. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ballestra, Luca Vincenzo & Cecere, Liliana, 2015. "Pricing American options under the constant elasticity of variance model: An extension of the method by Barone-Adesi and Whaley," Finance Research Letters, Elsevier, vol. 14(C), pages 45-55.
    2. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2015. "Pricing and static hedging of American-style knock-in options on defaultable stocks," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 343-360.
    3. José Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    4. Ravi Kashyap, 2016. "Securities Lending Strategies, Valuation of Term Loans using Option Theory," Papers 1609.01274,, revised Nov 2016.

    More about this item


    American knock-in options; Static hedging portfolio; Theta-matching condition; CEV model; Hedging effectiveness;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:1:p:191-205. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.