IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i3p940-952.html
   My bibliography  Save this article

The structural Theta method and its predictive performance in the M4-Competition

Author

Listed:
  • Sbrana, Giacomo
  • Silvestrini, Andrea

Abstract

The Theta method is a well-established prediction benchmark widely used in forecast competitions. This method has received significant attention since it was introduced more than 20 years ago, with several authors proposing variants to improve its performance. This paper considers multiple sources of error versions for Theta, belonging to the family of structural time series models. It investigates its out-of-sample forecast performance using the extensive M4-Competition dataset, which includes 100,000 time series. We compare the proposed structural Theta model against several benchmarks, including all variants of the Theta method. The results demonstrate its remarkable predictive abilities as it outperforms all its variants and competitors, emerging as a solid benchmark for use in forecast competitions.

Suggested Citation

  • Sbrana, Giacomo & Silvestrini, Andrea, 2025. "The structural Theta method and its predictive performance in the M4-Competition," International Journal of Forecasting, Elsevier, vol. 41(3), pages 940-952.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:940-952
    DOI: 10.1016/j.ijforecast.2024.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:940-952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.