IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v61y2015icp125-134.html
   My bibliography  Save this article

The time of deducting fees for variable annuities under the state-dependent fee structure

Author

Listed:
  • Zhou, Jiang
  • Wu, Lan

Abstract

We investigate the total time of deducting fees for variable annuities with state-dependent fee. This fee charging method is studied recently by Bernard et al. (2014) and Delong (2014) in which the fees deducted from the policyholder’s account depend on the account value. However, both of them have not considered the problem of analyzing probabilistic properties of the total time of deducting fees. We approximate the maturity of a general variable annuity contract by combinations of exponential distributions which are (weakly) dense in the space that is composed of all probability distributions on the positive axis. Working under general jump diffusion process, we derive analytic formulas for the expectation of the time of deducting fees as well as its Laplace transform.

Suggested Citation

  • Zhou, Jiang & Wu, Lan, 2015. "The time of deducting fees for variable annuities under the state-dependent fee structure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 125-134.
  • Handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:125-134
    DOI: 10.1016/j.insmatheco.2014.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714001772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    2. Ko, Bangwon & Shiu, Elias S.W. & Wei, Li, 2010. "Pricing maturity guarantee with dynamic withdrawal benefit," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 216-223, October.
    3. Hans Gerber & Elias Shiu, 2003. "Pricing Perpetual Fund Protection with Withdrawal Option," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 60-77.
    4. Bernard, Carole & Hardy, Mary & Mackay, Anne, 2014. "State-Dependent Fees For Variable Annuity Guarantees," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 559-585, September.
    5. Delong, Łukasz, 2014. "Pricing and hedging of variable annuities with state-dependent fees," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 24-33.
    6. Daniel Dufresne, 2007. "Fitting combinations of exponentials to probability distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(1), pages 23-48, January.
    7. Jean-Franc{c}ois Renaud, 2013. "On the time spent in the red by a refracted L\'evy risk process," Papers 1306.4619, arXiv.org.
    8. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2013. "Valuing equity-linked death benefits in jump diffusion models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 615-623.
    9. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    10. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2012. "Valuing equity-linked death benefits and other contingent options: A discounted density approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 73-92.
    11. Hyndman, Cody B. & Wenger, Menachem, 2014. "Valuation perspectives and decompositions for variable annuities with GMWB riders," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 283-290.
    12. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    13. Lee, Hangsuck, 2003. "Pricing equity-indexed annuities with path-dependent options," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 677-690, December.
    14. Daniel Dufresne, 2007. "Stochastic Life Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(1), pages 136-157.
    15. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    16. Ning Cai & Nan Chen & Xiangwei Wan, 2010. "Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 412-437, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne MacKay & Maciej Augustyniak & Carole Bernard & Mary R. Hardy, 2017. "Risk Management of Policyholder Behavior in Equity-Linked Life Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 661-690, June.
    2. Michael A. Kouritzin & Anne MacKay, 2017. "VIX-linked fees for GMWBs via Explicit Solution Simulation Methods," Papers 1708.06886, arXiv.org, revised Apr 2018.
    3. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.
    4. Zhou, Jiang & Wu, Lan, 2015. "Occupation times of refracted double exponential jump diffusion processes," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 218-227.
    5. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    6. Anna Rita Bacinello & Ivan Zoccolan, 2019. "Variable annuities with a threshold fee: valuation, numerical implementation and comparative static analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 21-49, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jiang & Wu, Lan, 2015. "Valuing equity-linked death benefits with a threshold expense strategy," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 79-90.
    2. Liang, Xiaoqing & Tsai, Cary Chi-Liang & Lu, Yi, 2016. "Valuing guaranteed equity-linked contracts under piecewise constant forces of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 150-161.
    3. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2012. "Valuing equity-linked death benefits and other contingent options: A discounted density approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 73-92.
    4. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2015. "Geometric stopping of a random walk and its applications to valuing equity-linked death benefits," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 313-325.
    5. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2013. "Valuing equity-linked death benefits in jump diffusion models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 615-623.
    6. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    7. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    8. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    9. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    10. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    11. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    12. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    13. Michael A. Kouritzin & Anne MacKay, 2017. "VIX-linked fees for GMWBs via Explicit Solution Simulation Methods," Papers 1708.06886, arXiv.org, revised Apr 2018.
    14. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    15. Delong, Łukasz, 2014. "Pricing and hedging of variable annuities with state-dependent fees," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 24-33.
    16. Runhuan Feng & Xiaochen Jing & Jan Dhaene, 2015. "Comonotonic Approximations of Risk Measures for Variable Annuity Guaranteed Benefits with Dynamic Policyholder Behavior," Tinbergen Institute Discussion Papers 15-008/IV/DSF85, Tinbergen Institute.
    17. Hainaut, Donatien, 2016. "Impact of volatility clustering on equity indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 367-381.
    18. David Landriault & Bin Li & Mohamed Amine Lkabous, 2019. "On occupation times in the red of L\'evy risk models," Papers 1903.03721, arXiv.org, revised Jul 2019.
    19. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.
    20. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2020. "On occupation times in the red of Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 17-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:125-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.