IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v24y1999i3p201-217.html
   My bibliography  Save this article

Extremal generators and extremal distributions for the continuous s-convex stochastic orderings

Author

Listed:
  • Denuit, Michel
  • Vylder, Etienne De
  • Lefevre, Claude

Abstract

No abstract is available for this item.

Suggested Citation

  • Denuit, Michel & Vylder, Etienne De & Lefevre, Claude, 1999. "Extremal generators and extremal distributions for the continuous s-convex stochastic orderings," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 201-217, May.
  • Handle: RePEc:eee:insuma:v:24:y:1999:i:3:p:201-217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(98)00053-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borch, Karl, 1961. "The Utility Concept Applied to the Theory of Insurance," ASTIN Bulletin, Cambridge University Press, vol. 1(5), pages 245-255, July.
    2. Heijnen, B., 1990. "Best upper and lower bounds on modified stop loss premiums in case of known range, mode, mean and variance of the original risk," Insurance: Mathematics and Economics, Elsevier, vol. 9(2-3), pages 207-220, September.
    3. Kaas, R. & Goovaerts, M. J., 1986. "Extremal values of stop-loss premiums under moment constraints," Insurance: Mathematics and Economics, Elsevier, vol. 5(4), pages 279-283, October.
    4. Jansen, K. & Haezendonck, J. & Goovaerts, M. J., 1986. "Upper bounds on stop-loss premiums in case of known moments up to the fourth order," Insurance: Mathematics and Economics, Elsevier, vol. 5(4), pages 315-334, October.
    5. De Vylder, F., 1980. "An Illustration of the Duality Technique in Semi-Continuous Linear Programming," ASTIN Bulletin, Cambridge University Press, vol. 11(1), pages 17-28, June.
    6. Kaas, R. & Goovaerts, M. J., 1986. "Bounds on Stop-Loss Premiums for Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 16(1), pages 13-17, April.
    7. De Vylder, F., 1982. "Best upper bounds for integrals with respect to measures allowed to vary under conical and integral constraints," Insurance: Mathematics and Economics, Elsevier, vol. 1(2), pages 109-130, April.
    8. Kaas, R. & Hesselager, O., 1995. "Ordering claim size distributions and mixed Poisson probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 193-201, October.
    9. Goovaerts, M. J. & Kaas, R., 1985. "Application of the problem of moments to derive bounds on integrals with integral constraints," Insurance: Mathematics and Economics, Elsevier, vol. 4(2), pages 99-111, April.
    10. De Vylder, F. & Goovaerts, M., 1983. "Maximization of the variance of a stop-loss reinsured risk," Insurance: Mathematics and Economics, Elsevier, vol. 2(2), pages 75-80, April.
    11. Bühlmann, H. & Gagliardi, B. & Gerber, H. U. & Straub, E., 1977. "Some Inequalities for Stop-Loss Premiums," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 75-83, January.
    12. De Vylder, F., 1983. "Maximization, under equality constraints, of a functional of a probability distribution," Insurance: Mathematics and Economics, Elsevier, vol. 2(1), pages 1-16, January.
    13. Kaas, R & Goovaerts, M, 1985. "Bounds On Distribution Functions Under Integral Constraints," University of Amsterdam, Actuarial Science and Econometrics Archive 293091, University of Amsterdam, Faculty of Economics and Business.
    14. Goovaerts, M. J. & De Vylder, F. & Haezendonck, J., 1982. "Ordering of risks: a review," Insurance: Mathematics and Economics, Elsevier, vol. 1(2), pages 131-161, April.
    15. Kaas, R. & Goovaerts, M. J., 1986. "Best bounds for positive distributions with fixed moments," Insurance: Mathematics and Economics, Elsevier, vol. 5(1), pages 87-92, January.
    16. Denuit, Michel & Lefevre, Claude, 1997. "Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 197-213, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Man Hong & Zhang, Shuzhong, 2013. "Computing best bounds for nonlinear risk measures with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 204-212.
    2. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
    3. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    4. Villegas, Andrés M. & Medaglia, Andrés L. & Zuluaga, Luis F., 2012. "Computing bounds on the expected payoff of Alternative Risk Transfer products," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 271-281.
    5. Laureano Escudero & Eva-María Ortega, 2009. "How retention levels influence the variability of the total risk under reinsurance," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 139-157, July.
    6. Claude Lefèvre & Stéphane Loisel & Pierre Montesinos, 2020. "Bounding basis risk using s-convex orders on Beta-unimodal distributions," Working Papers hal-02611208, HAL.
    7. Denuit, Michel & Lefevre, Claude & Mesfioui, M'hamed, 1999. "A class of bivariate stochastic orderings, with applications in actuarial sciences," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 31-50, March.
    8. Denuit, Michel & Vermandele, Catherine, 1998. "Optimal reinsurance and stop-loss order," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 229-233, July.
    9. Denuit, Michel & Lefevre, Claude & Utev, Sergey, 2002. "Measuring the impact of dependence between claims occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 1-19, February.
    10. Lefèvre, Claude & Loisel, Stéphane, 2010. "Stationary-excess operator and convex stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 64-75, August.
    11. Genest, Christian & Marceau, Étienne & Mesfioui, Mhamed, 2002. "Upper stop-loss bounds for sums of possibly dependent risks with given means and variances," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 33-41, March.
    12. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel, 2017. "Value-at-Risk Bounds With Variance Constraints," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 923-959, September.
    13. Schepper, Ann De & Heijnen, Bart, 2007. "Distribution-free option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 179-199, March.
    14. Cheng, Yu & Pai, Jeffrey S., 2003. "On the nth stop-loss transform order of ruin probability," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 51-60, February.
    15. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2004. "Some new classes of consistent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 505-516, June.
    16. Dionne, Georges & Harrington, Scott, 2017. "Insurance and Insurance Markets," Working Papers 17-2, HEC Montreal, Canada Research Chair in Risk Management.
    17. Denuit, Michel & Liu, Liqun & Meyer, Jack, 2014. "A separation theorem for the weak s-convex orders," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 279-284.
    18. MERCIER, Sophie & CASTRO, I.T., 2019. "Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system," European Journal of Operational Research, Elsevier, vol. 273(1), pages 237-248.
    19. Jason S. Anquandah & Leonid V. Bogachev, 2019. "Optimal Stopping and Utility in a Simple Modelof Unemployment Insurance," Risks, MDPI, Open Access Journal, vol. 7(3), pages 1-41, September.
    20. Korn, Ralf, 2005. "Worst-case scenario investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 1-11, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:24:y:1999:i:3:p:201-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nithya Sathishkumar (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.