IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v122y2025icp91-118.html
   My bibliography  Save this article

Efficient and proper generalised linear models with power link functions

Author

Listed:
  • Asimit, Vali
  • Badescu, Alexandru
  • Chen, Ziwei
  • Zhou, Feng

Abstract

The generalised linear model is a flexible predictive model for observational data that is widely used in practice as it extends linear regression models to non-Gaussian data. In this paper, we introduce the concept of a properly defined generalised linear model by requiring the conditional mean of the response variable to be properly mapped through the chosen link function and the log-likelihood function to be concave. We provide a comprehensive classification of proper generalised linear models for the Tweedie family and its popular subclasses under different link function specifications. Our main theoretical findings show that most Tweedie generalised linear models are not proper for canonical and log link functions, and identify a rich class of proper Tweedie generalised linear models with power link functions. We provide a novel interpretability methodology for power link functions that is mathematically sound and very simple, which could help the adoption of such a link function that has not been used much in practice for its lack of interpretability. Using self-concordant log-likelihoods and linearisation techniques, we provide novel algorithms for estimating several special cases of proper and not proper Tweedie generalised linear models with power link functions. The effectiveness of our methods is determined through an extensive numerical comparison of our estimates and those obtained using three built-in packages, MATLABfitglm, Rglm2 and Pythonsm.GLM libraries, which are all implemented based on the standard Iteratively Reweighted Least Squares method. Overall, we find that our algorithms consistently outperform these benchmarks in terms of both accuracy and efficiency, the largest improvements being documented for high-dimensional settings. This is concluded for both simulated data and real data, which shows that our optimisation-based GLM implementation is a good alternative to the standard Iteratively Reweighted Least Squares implementations available in well-known software.

Suggested Citation

  • Asimit, Vali & Badescu, Alexandru & Chen, Ziwei & Zhou, Feng, 2025. "Efficient and proper generalised linear models with power link functions," Insurance: Mathematics and Economics, Elsevier, vol. 122(C), pages 91-118.
  • Handle: RePEc:eee:insuma:v:122:y:2025:i:c:p:91-118
    DOI: 10.1016/j.insmatheco.2025.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668725000368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2025.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Generalised linear model; Tweedie regression; Power link function; Self-concordance;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:122:y:2025:i:c:p:91-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.