IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v46y2019icp173-186.html
   My bibliography  Save this article

Exploiting user experience from online customer reviews for product design

Author

Listed:
  • Yang, Bai
  • Liu, Ying
  • Liang, Yan
  • Tang, Min

Abstract

Understanding user experience (UX) becomes more important in a market-driven design paradigm because it helps designers uncover significant factors, such as user’s preference, usage context, product features, as well as their interrelations. Conventional means, such as questionnaire, survey and self-report with predefined questions and prompts, are used to collect information about users’ experience during various UX studies. However, such data is often limited and restricted by initial setups, and they won’t easily allow designers to identify all critical elements such as user profile, context, related product features, etc. Meanwhile, with widely accessible social media, the volume and velocity of customer-generated data are fast-increasing. While it is generally acknowledged that such data contains important elements in understanding and analyzing UX, extracting them to assist product design remains a challenging issue. In this study, how UX data underlying product design can be isolated and restored from customer online reviews is examined. A faceted conceptual model is proposed to elucidate the crucial factors of UX, which serves as an operational mechanism connecting to product design. A methodology of establishing a UX knowledge base from customer online reviews is then proposed to support UX-centered design activities, which consists of three stages, i.e., UX discovery to extract UX data from a single review, UX data integration to group similar data and UX network formalization to build up the causal dependencies among UX groups. Using a case study on smart mobile phone reviews, examples of UX data discovered are demonstrated and both customers and designers concerned key product features and usage situations are exemplified. This study explores the feasibility to discover valuable UX data as well as their relations automatically for product design and business strategic plan by analyzing a large volume of customer online data.

Suggested Citation

  • Yang, Bai & Liu, Ying & Liang, Yan & Tang, Min, 2019. "Exploiting user experience from online customer reviews for product design," International Journal of Information Management, Elsevier, vol. 46(C), pages 173-186.
  • Handle: RePEc:eee:ininma:v:46:y:2019:i:c:p:173-186
    DOI: 10.1016/j.ijinfomgt.2018.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218305437
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2018.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Margaret L. & Teo, Thompson S.H., 2012. "Product attributes and brand equity in the mobile domain: The mediating role of customer experience," International Journal of Information Management, Elsevier, vol. 32(2), pages 139-146.
    2. Zhan, Jiaming & Loh, Han Tong & Liu, Ying, 2009. "On macro- and micro-level information in multiple documents and its influence on summarization," International Journal of Information Management, Elsevier, vol. 29(1), pages 57-66.
    3. Xu, Xun & Wang, Xuequn & Li, Yibai & Haghighi, Mohammad, 2017. "Business intelligence in online customer textual reviews: Understanding consumer perceptions and influential factors," International Journal of Information Management, Elsevier, vol. 37(6), pages 673-683.
    4. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    5. Kim, Dong-hyu & Lee, Heejin, 2016. "Effects of user experience on user resistance to change to the voice user interface of an in‑vehicle infotainment system: Implications for platform and standards competition," International Journal of Information Management, Elsevier, vol. 36(4), pages 653-667.
    6. Ahmad, Shimi Naurin & Laroche, Michel, 2017. "Analyzing electronic word of mouth: A social commerce construct," International Journal of Information Management, Elsevier, vol. 37(3), pages 202-213.
    7. Palese, B. & Usai, A., 2018. "The relative importance of service quality dimensions in E-commerce experiences," International Journal of Information Management, Elsevier, vol. 40(C), pages 132-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Son, Youngdoo & Kim, Wonjoon, 2023. "Development of methodology for classification of user experience (UX) in online customer review," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    2. Jiao, Hao & Wang, Lindong & Yang, Jifeng, 2023. "Standing head and shoulders above others? Complementor experience-based design and crowdfunding success on digital platforms," Technovation, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jimenez-Marquez, Jose Luis & Gonzalez-Carrasco, Israel & Lopez-Cuadrado, Jose Luis & Ruiz-Mezcua, Belen, 2019. "Towards a big data framework for analyzing social media content," International Journal of Information Management, Elsevier, vol. 44(C), pages 1-12.
    2. Martí Bigorra, Anna & Isaksson, Ove & Karlberg, Magnus, 2019. "Aspect-based Kano categorization," International Journal of Information Management, Elsevier, vol. 46(C), pages 163-172.
    3. Wang, Wei-Tsong & Ou, Wei-Ming & Chen, Wen-Yin, 2019. "The impact of inertia and user satisfaction on the continuance intentions to use mobile communication applications: A mobile service quality perspective," International Journal of Information Management, Elsevier, vol. 44(C), pages 178-193.
    4. Ahmad Ibrahim Aljumah & Mohammed T. Nuseir & Md. Mahmudul Alam, 2021. "Traditional marketing analytics, big data analytics and big data system quality and the success of new product development," Post-Print hal-03538161, HAL.
    5. Cano-Marin, Enrique & Mora-Cantallops, Marçal & Sánchez-Alonso, Salvador, 2023. "Twitter as a predictive system: A systematic literature review," Journal of Business Research, Elsevier, vol. 157(C).
    6. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    7. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Lutfi, Abdalwali & Alrawad, Mahmaod & Alsyouf, Adi & Almaiah, Mohammed Amin & Al-Khasawneh, Ahmad & Al-Khasawneh, Akif Lutfi & Alshira'h, Ahmad Farhan & Alshirah, Malek Hamed & Saad, Mohamed & Ibrahim, 2023. "Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    9. Zuo, Wenming & Bai, Weijing & Zhu, Wenfeng & He, Xinming & Qiu, Xinxin, 2022. "Changes in service quality of sharing accommodation: Evidence from airbnb," Technology in Society, Elsevier, vol. 71(C).
    10. Mohamed Gaber & Edward J. Lusk, 2019. "A Vetting Protocol for the Analytical Procedures Platform for the AP-Phase of PCAOB Audits," Accounting and Finance Research, Sciedu Press, vol. 8(4), pages 1-43, November.
    11. Acharya, Abhilash & Singh, Sanjay Kumar & Pereira, Vijay & Singh, Poonam, 2018. "Big data, knowledge co-creation and decision making in fashion industry," International Journal of Information Management, Elsevier, vol. 42(C), pages 90-101.
    12. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    13. Harkaran Kava & Konstantina Spanaki & Thanos Papadopoulos & Stella Despoudi & Oscar Rodriguez-Espindola & Masoud Fakhimi, 2021. "Data Analytics Diffusion in the UK Renewable Energy Sector: An Innovation Perspective," Post-Print hal-03781046, HAL.
    14. Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
    15. Dong, Xueyan & Wang, Tienan, 2018. "Social tie formation in Chinese online social commerce: The role of IT affordances," International Journal of Information Management, Elsevier, vol. 42(C), pages 49-64.
    16. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    17. Saito, Taiga & Takahashi, Akihiko & Koide, Noriaki & Ichifuji, Yu, 2019. "Application of online booking data to hotel revenue management," International Journal of Information Management, Elsevier, vol. 46(C), pages 37-53.
    18. Judita Peterlin & Maja Meško & Vlado Dimovski & Vasja Roblek, 2021. "Automated content analysis: The review of the big data systemic discourse in tourism and hospitality," Systems Research and Behavioral Science, Wiley Blackwell, vol. 38(3), pages 377-385, May.
    19. Jian Wang & Fakhar Shahzad & Zeeshan Ahmad & Muhammad Abdullah & Nadir Munir Hassan, 2022. "Trust and Consumers’ Purchase Intention in a Social Commerce Platform: A Meta-Analytic Approach," SAGE Open, , vol. 12(2), pages 21582440221, April.
    20. Zhiyuan Yu & Doudou Jin, 2021. "Determinants of Users’ Attitude and Intention to Intelligent Connected Vehicle Infotainment in the 5G-V2X Mobile Ecosystem," IJERPH, MDPI, vol. 18(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:46:y:2019:i:c:p:173-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.