IDEAS home Printed from
   My bibliography  Save this article

Lexicographic composition of simple games


  • O'Neill, Barry
  • Peleg, Bezalel


Certain voting bodies can be modeled as a simple game where a coalition's winning depends on whether it wins, blocks or loses in two smaller simple games. There are essentially five such ways to combine two proper games into a proper game. The most decisive is the lexicographic rule, where a coalition must either win in G1, or block in G1 and win in G2. When two isomorphic games are combined lexicographically, a given role for a player confers equal or more power when held in the first game than the second, if power is assessed by any semi-value. A game is lexicographically separable when the players of the two components partition the whole set. Games with veto players are not separable, and games of two or more players with identical roles are separable only if decisive. Some separable games are egalitarian in that they give players identical roles.

Suggested Citation

  • O'Neill, Barry & Peleg, Bezalel, 2008. "Lexicographic composition of simple games," Games and Economic Behavior, Elsevier, vol. 62(2), pages 628-642, March.
  • Handle: RePEc:eee:gamebe:v:62:y:2008:i:2:p:628-642

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Pradeep Dubey & Abraham Neyman & Robert James Weber, 1981. "Value Theory Without Efficiency," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 122-128, February.
    2. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yokote, Koji & Funaki, Yukihiko & Kamijo, Yoshio, 2016. "A new basis and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 21-24.
    2. Rudolf Berghammer & Agnieszka Rusinowska & Harrie de Swart, 2009. "A Relation-algebraic Approach to Simple Games," Working Papers 0913, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:62:y:2008:i:2:p:628-642. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.