Soybean futures responses to meteorological disaster risk —— Empirical evidence from the Chicago board of trade
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2025.106904
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
- Franses, Philip Hans, 1991.
"Seasonality, non-stationarity and the forecasting of monthly time series,"
International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
- Franses, P. H., 1990. "Seasonality, Nonstationarity And The Forecasting Of Monthly Time Series," Econometric Institute Archives 272481, Erasmus University Rotterdam.
- Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Massimo Peri, 2017. "Climate variability and the volatility of global maize and soybean prices," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(4), pages 673-683, August.
- Hua, Renhai & Liu, Qingfu & Tse, Yiuman & Yu, Qin, 2023. "The impact of natural disaster risk on the return of agricultural futures," Journal of Asian Economics, Elsevier, vol. 87(C).
- Bahloul, Walid & Balcilar, Mehmet & Cunado, Juncal & Gupta, Rangan, 2018.
"The role of economic and financial uncertainties in predicting commodity futures returns and volatility: Evidence from a nonparametric causality-in-quantiles test,"
Journal of Multinational Financial Management, Elsevier, vol. 45(C), pages 52-71.
- Walid Bahloul & Mehmet Balcilar & Juncal Cunado & Rangan Gupta, 2017. "The Role of Economic and Financial Uncertainties in Predicting Commodity Futures Returns and Volatility: Evidence from a Nonparametric Causality-in-Quantiles Test," Working Papers 201725, University of Pretoria, Department of Economics.
- Westcott, Paul C. & Jewison, Michael, 2013. "Weather Effects on Expected Corn and Soybean Yields," Agricultural Outlook Forum 2013 146846, United States Department of Agriculture, Agricultural Outlook Forum.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016.
"Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014. "Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation," Monash Econometrics and Business Statistics Working Papers 11/14, Monash University, Department of Econometrics and Business Statistics.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Yang Xu & Zhihao Xia & Chuanhui Wang & Weifeng Gong & Xia Liu & Xiaodi Su & Niansheng Tang, 2021. "An Empirical Analysis of the Price Volatility Characteristics of China’s Soybean Futures Market Based on ARIMA-GJR-GARCH Model," Journal of Mathematics, Hindawi, vol. 2021, pages 1-9, November.
- Chuan-hui Wang & Li-ping Wang & Wei-feng Gong & Hai-xia Zhang & Xia Liu & Shahzad Sarfraz, 2021. "Price Risk Measurement of China’s Soybean Futures Market Based on the VAR-GJR-GARCH Model," Complexity, Hindawi, vol. 2021, pages 1-12, December.
- Makkonen, Adam & Vallström, Daniel & Uddin, Gazi Salah & Rahman, Md Lutfur & Haddad, Michel Ferreira Cardia, 2021. "The effect of temperature anomaly and macroeconomic fundamentals on agricultural commodity futures returns," Energy Economics, Elsevier, vol. 100(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
- Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
- Su, Yuandong & Liang, Chao & Zhang, Li & Zeng, Qing, 2022. "Uncover the response of the U.S grain commodity market on El Niño–Southern Oscillation," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 98-112.
- Zhang, Xiaoyun & Guo, Qiang, 2024. "How useful are energy-related uncertainty for oil price volatility forecasting?," Finance Research Letters, Elsevier, vol. 60(C).
- Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
- Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
- Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
- Naimoli, Antonio & Storti, Giuseppe, 2019.
"Heterogeneous component multiplicative error models for forecasting trading volumes,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1332-1355.
- Naimoli, Antonio & Storti, Giuseppe, 2019. "Heterogeneous component multiplicative error models for forecasting trading volumes," MPRA Paper 93802, University Library of Munich, Germany.
- Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023.
"Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach,"
Energy Economics, Elsevier, vol. 120(C).
- Syed Ali Raza & Amna Masood & Ramzi Benkraiem & Christian Urom, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Post-Print hal-04080872, HAL.
- Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
- Duc Khuong Nguyen & Thomas Walther, 2020.
"Modeling and forecasting commodity market volatility with long‐term economic and financial variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
- Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
- Thomas Walther & Duc Khuong Nguyen, 2018. "Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables," Working Papers on Finance 1824, University of St. Gallen, School of Finance.
- Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2019. "On the asymmetric impact of macro–variables on volatility," Economic Modelling, Elsevier, vol. 76(C), pages 135-152.
- Pan, Zhiyuan & Xiao, Dongli & Dong, Qingma & Liu, Li, 2022. "Structural breaks, macroeconomic fundamentals and cross hedge ratio," Finance Research Letters, Elsevier, vol. 47(PA).
- Hong, Yanran & Yu, Jize & Su, Yuquan & Wang, Lu, 2023. "Southern oscillation: Great value of its trends for forecasting crude oil spot price volatility," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 358-368.
- Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
- Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
- Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:78:y:2025:i:c:s1544612325001680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.