IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v75y2025ics1544612325000868.html
   My bibliography  Save this article

Knowledge-based multiplex network reconstruction and influential substructure identification of stock time series: An application to the Chinese A-share market

Author

Listed:
  • Zhang, Xiaoqi
  • Du, Peilin
  • Zheng, Yanqiao
  • Zhang, Zexuan
  • Yao, Jiayi

Abstract

We propose a novel and easy-to-implement algorithm to reconstruct the hidden network from stock time series with the assist of prior knowledge in finance. Compared with the data-oriented approaches, our knowledge-based approach gives the first attempt to utilize the pricing knowledge in factor model, which results naturally in a multiplex structure of stock network. Each of the multi-layers in the network encodes the structural feature of the corresponding pricing factor into a core–periphery subnetwork, suggesting the influential channels for certain types of risk propagation. We apply the algorithm to Chinese A-share market and reveal the advantage of the knowledge add-in.

Suggested Citation

  • Zhang, Xiaoqi & Du, Peilin & Zheng, Yanqiao & Zhang, Zexuan & Yao, Jiayi, 2025. "Knowledge-based multiplex network reconstruction and influential substructure identification of stock time series: An application to the Chinese A-share market," Finance Research Letters, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:finlet:v:75:y:2025:i:c:s1544612325000868
    DOI: 10.1016/j.frl.2025.106821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325000868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.106821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    2. Matteo Barigozzi & Haeran Cho & Dom Owens, 2024. "FNETS: Factor-Adjusted Network Estimation and Forecasting for High-Dimensional Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 890-902, July.
    3. Huang, Chuangxia & Wen, Shigang & Li, Mengge & Wen, Fenghua & Yang, Xin, 2021. "An empirical evaluation of the influential nodes for stock market network: Chinese A-shares case," Finance Research Letters, Elsevier, vol. 38(C).
    4. Liu, Jianan & Stambaugh, Robert F. & Yuan, Yu, 2019. "Size and value in China," Journal of Financial Economics, Elsevier, vol. 134(1), pages 48-69.
    5. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    6. de Pontes, Lucca Siebra & Rêgo, Leandro Chaves, 2022. "Impact of macroeconomic variables on the topological structure of the Brazilian stock market: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Wang, Ze & Gao, Xiangyun & Huang, Shupei & Sun, Qingru & Chen, Zhihua & Tang, Renwu & Di, Zengru, 2022. "Measuring systemic risk contribution of global stock markets: A dynamic tail risk network approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Chen, Muzi & Li, Nan & Zheng, Lifen & Huang, Difang & Wu, Boyao, 2022. "Dynamic correlation of market connectivity, risk spillover and abnormal volatility in stock price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    9. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    10. Yang, Xin & Jin, Cheng & Huang, Chuangxia & Yang, Xiaoguang, 2023. "Network characteristics and stock liquidity:Evidence from the UK," Finance Research Letters, Elsevier, vol. 53(C).
    11. Gong, Xiao-Li & Liu, Jian-Min & Xiong, Xiong & Zhang, Wei, 2022. "Research on stock volatility risk and investor sentiment contagion from the perspective of multi-layer dynamic network," International Review of Financial Analysis, Elsevier, vol. 84(C).
    12. French, Declan & Wu, Yuliang & Li, Youwei, 2016. "Identifying the relative importance of stock characteristics," Journal of Multinational Financial Management, Elsevier, vol. 34(C), pages 80-91.
    13. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    14. Wang, Gang-Jin & Xiong, Lu & Zhu, You & Xie, Chi & Foglia, Matteo, 2022. "Multilayer network analysis of investor sentiment and stock returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    2. Shaikh, Salman, 2013. "Investment Decisions by Analysts: A Case Study of KSE," MPRA Paper 53802, University Library of Munich, Germany.
    3. repec:dau:papers:123456789/2514 is not listed on IDEAS
    4. Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
    5. Lu Zhang, 2019. "Q-factors and Investment CAPM," NBER Working Papers 26538, National Bureau of Economic Research, Inc.
    6. Alfred Mbairadjim Moussa & Jules Sadefo Kamdem, 2022. "A fuzzy multifactor asset pricing model," Annals of Operations Research, Springer, vol. 313(2), pages 1221-1241, June.
    7. García Iborra, Rafael & Howden, David, 2016. "Uses and Misuses of Arbitrage in Financial Theory, and a Suggested Alternative," MPRA Paper 79802, University Library of Munich, Germany.
    8. Massimo Guidolin & Manuela Pedio & Dimos Andronoudis, 2019. "How Smart is the Real Estate Smart Beta? Evidence from Optimal Style Factor Strategies for REITs," BAFFI CAREFIN Working Papers 19117, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    9. Javid, Attiya Yasmin & Ahmad, Eatzaz, 2008. "Testing multifactor capital asset pricing model in case of Pakistani market," MPRA Paper 37341, University Library of Munich, Germany.
    10. Shahzad, Syed Jawad Hussain & Zakaria, Muhammad & Raza, Naveed, 2014. "Sensitivity Analysis of CAPM Estimates: Data Frequency and Time Frame," MPRA Paper 60110, University Library of Munich, Germany.
    11. Muhammad Usman Arshad, 2021. "Forecasted E/P Ratio and ROE: Shanghai Stock Exchange (SSE), China," SAGE Open, , vol. 11(2), pages 21582440211, June.
    12. Los, Cornelis A., 1999. "Galton's Error and the under-representation of systematic risk," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1793-1829, December.
    13. Diane Wilcox & Tim Gebbie, 2013. "Factorising equity returns in an emerging market through exogenous shocks and capital flows," Papers 1306.5302, arXiv.org, revised Jul 2013.
    14. Peter Brusov & Tatiana Filatova, 2024. "Qualitatively New Approach to Business Valuation and Company Value," Mathematics, MDPI, vol. 13(1), pages 1-20, December.
    15. Zhang, Tianyang & Lence, Sergio H., 2022. "Liquidity and asset pricing: Evidence from the Chinese stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    16. Alex R. Horenstein, 2021. "The Unintended Impact of Academic Research on Asset Returns: The Capital Asset Pricing Model Alpha," Management Science, INFORMS, vol. 67(6), pages 3655-3673, June.
    17. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    18. Adrian, Tobias & Franzoni, Francesco, 2009. "Learning about beta: Time-varying factor loadings, expected returns, and the conditional CAPM," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 537-556, September.
    19. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    20. Ferson, Wayne E. & Harvey, Campbell R., 1997. "Fundamental determinants of national equity market returns: A perspective on conditional asset pricing," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1625-1665, December.
    21. Sun, Kaisi & Wang, Hui & Zhu, Yifeng, 2022. "How is the change in left-tail risk priced in China?," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:75:y:2025:i:c:s1544612325000868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.