IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v29y2019icp347-356.html
   My bibliography  Save this article

Risk premium contributions of the Fama and French mimicking factors

Author

Listed:
  • Bank, Matthias
  • Insam, Franz

Abstract

We take a new look on the Fama and French (1993) three-factor asset pricing model by extracting risk premium contributions for each factor based on solving a system of linear equations. The risk premium contributions become uncorrelated with the underlying factor excess returns and capture the isolated compensation of a given risk factor. We show that the risk premium contributions feature a January-seasonality, which exhibits a negative shift after the year 1993. Furthermore we find that after 1993 the risk premium contributions of the SMB and HML factor are strongly related to sentiment and predictable by dividend yield.

Suggested Citation

  • Bank, Matthias & Insam, Franz, 2019. "Risk premium contributions of the Fama and French mimicking factors," Finance Research Letters, Elsevier, vol. 29(C), pages 347-356.
  • Handle: RePEc:eee:finlet:v:29:y:2019:i:c:p:347-356
    DOI: 10.1016/j.frl.2018.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612318301004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2018.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    3. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    4. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    5. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    6. repec:wvu:wpaper:10-05 is not listed on IDEAS
    7. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    8. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    9. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    10. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Elton, Edwin J & Gruber, Martin J, 1973. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Journal of Finance, American Finance Association, vol. 28(5), pages 1203-1232, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Anuno & Mara Madaleno & Elisabete Vieira, 2023. "Using the Capital Asset Pricing Model and the Fama–French Three-Factor and Five-Factor Models to Manage Stock and Bond Portfolios: Evidence from Timor-Leste," JRFM, MDPI, vol. 16(11), pages 1-22, November.
    2. Son, Bumho & Lee, Jaewook, 2022. "Graph-based multi-factor asset pricing model," Finance Research Letters, Elsevier, vol. 44(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Qi & Lin, Xi, 2021. "Cash conversion cycle and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    2. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    3. Lutzenberger, Fabian T., 2014. "The predictability of aggregate returns on commodity futures," Review of Financial Economics, Elsevier, vol. 23(3), pages 120-130.
    4. Shen, Junyan & Yu, Jianfeng & Zhao, Shen, 2017. "Investor sentiment and economic forces," Journal of Monetary Economics, Elsevier, vol. 86(C), pages 1-21.
    5. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, June.
    6. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    7. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    8. John H. Cochrane, 2017. "Macro-Finance," Review of Finance, European Finance Association, vol. 21(3), pages 945-985.
    9. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    10. Maio, Paulo & Philip, Dennis, 2015. "Macro variables and the components of stock returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 287-308.
    11. Valentin Haddad & Serhiy Kozak & Shrihari Santosh & Stijn Van Nieuwerburgh, 2020. "Factor Timing," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1980-2018.
    12. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    13. Chue, Timothy K. & Xu, Jin Karen, 2022. "Profitability, asset investment, and aggregate stock returns," Journal of Banking & Finance, Elsevier, vol. 143(C).
    14. Cooper, Michael J. & Gubellini, Stefano, 2011. "The critical role of conditioning information in determining if value is really riskier than growth," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 289-305, March.
    15. Calvet, Laurent E. & Betermier, Sebastien & Jo, Evan, 2019. "A Supply and Demand Approach to Equity Pricing," CEPR Discussion Papers 13974, C.E.P.R. Discussion Papers.
    16. Ekaterini Panopoulou & Sotiria Plastira, 2014. "Fama French factors and US stock return predictability," Journal of Asset Management, Palgrave Macmillan, vol. 15(2), pages 110-128, April.
    17. de Oliveira Souza, Thiago, 2016. "The size premium and intertemporal risk," Discussion Papers on Economics 3/2016, University of Southern Denmark, Department of Economics.
    18. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    19. Robin Greenwood & Samuel G. Hanson, 2013. "Issuer Quality and Corporate Bond Returns," The Review of Financial Studies, Society for Financial Studies, vol. 26(6), pages 1483-1525.
    20. Gregory Nazaire & Maria Pacurar & Oumar Sy, 2020. "Betas versus characteristics: A practical perspective," European Financial Management, European Financial Management Association, vol. 26(5), pages 1385-1413, November.

    More about this item

    Keywords

    Asset pricing; Fama–French model; Risk premium contributions; Decomposition; Predictability; January effect;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:29:y:2019:i:c:p:347-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.