IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v97y2016icp350-358.html
   My bibliography  Save this article

Dynamic simulation of mixed refrigerant process for small-scale LNG plant in skid mount packages

Author

Listed:
  • He, Tianbiao
  • Ju, Yonglin

Abstract

The utilization of small natural gas reservoirs has attracted more and more attention. Most of the optimization studies concentrated on mixed refrigerant liquefaction process at steady-state simulation. Only a few studies have reported dynamic simulation of mixed refrigerant LNG (liquefied natural gas) process. The main purpose of this study was to design a dynamic model of mixed refrigerant LNG process for small-scale LNG plant in skid mount packages and to investigate the dynamic behaviors of this process. The variations of natural gas temperature, composition, pressure, flow rate and water-cooler temperature were selected as disturbances to test the stability and dynamic responses of the process. The dynamic responses of LNG temperature and total compressor energy consumption were the criteria to investigate the influences of disturbances on the process. Finally, the dynamic responses of disturbances were obtained and discussed. The simulation results showed that LNG temperature could go back to its set point value after a few minutes, while compressor duty varied with the disturbances. It indicated that the mixed refrigerant liquefaction process for small-scale LNG plant in skid mount packages could overcome some disturbances and operate at stable state.

Suggested Citation

  • He, Tianbiao & Ju, Yonglin, 2016. "Dynamic simulation of mixed refrigerant process for small-scale LNG plant in skid mount packages," Energy, Elsevier, vol. 97(C), pages 350-358.
  • Handle: RePEc:eee:energy:v:97:y:2016:i:c:p:350-358
    DOI: 10.1016/j.energy.2016.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216000074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Mohd Shariq & Lee, Moonyong, 2013. "Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints," Energy, Elsevier, vol. 49(C), pages 146-155.
    2. Mortazavi, A. & Somers, C. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2012. "Performance enhancement of propane pre-cooled mixed refrigerant LNG plant," Applied Energy, Elsevier, vol. 93(C), pages 125-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yehia, Fatma & Al-Haimi, Akram Ali Nasser Mansoor & Byun, Yuree & Kim, Junseok & Yun, Yesom & Lee, Gahyeon & Yu, Seoyeon & Yang, Chao & Liu, Lihua & Qyyum, Muhammad Abdul & Hwang, Jihyun, 2024. "Integration of the single-effect mixed refrigerant cycle with liquified air energy storage and cold energy of LNG regasification: Energy, exergy, and efficiency prospectives," Energy, Elsevier, vol. 306(C).
    2. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    3. Yang, Shanju & Fu, Bao & Hou, Yu & Chen, Shuangtao & Li, Zhiguo & Wang, Shaojin, 2019. "Transient cooling and operational performance of the cryogenic part in reverse Brayton air refrigerator," Energy, Elsevier, vol. 167(C), pages 921-938.
    4. Son, Hyunsoo & Kim, Jin-Kuk, 2019. "Operability study on small-scale BOG (boil-off gas) re-liquefaction processes," Energy, Elsevier, vol. 185(C), pages 1263-1281.
    5. Qyyum, Muhammad Abdul & He, Tianbiao & Qadeer, Kinza & Mao, Ning & Lee, Sanggyu & Lee, Moonyong, 2020. "Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction," Applied Energy, Elsevier, vol. 268(C).
    6. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    7. Sun, Chongzheng & Li, Yuxing & Han, Hui & Zhu, Jianlu & Wang, Shaowei & Liu, Liang, 2019. "Experimental and numerical simulation study on the offshore adaptability of spiral wound heat exchanger in LNG-FPSO DMR natural gas liquefaction process," Energy, Elsevier, vol. 189(C).
    8. He, Tianbiao & Liu, Zuming & Ju, Yonglin & Parvez, Ashak Mahmud, 2019. "A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant," Energy, Elsevier, vol. 167(C), pages 1-12.
    9. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    10. He, Tianbiao & Mao, Ning & Liu, Zuming & Qyyum, Muhammad Abdul & Lee, Moonyong & Pravez, Ashak Mahmud, 2020. "Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes," Energy, Elsevier, vol. 199(C).
    11. Xuan, Ivan Ying & Skourup, Charlotte & Jensen, Jørgen B. & Haugen, Trond & Thornhill, Nina F., 2022. "Flexible operation of a mixed fluid cascade LNG plant for electrical power management," Energy, Elsevier, vol. 250(C).
    12. He, Tianbiao & Ma, Jie & Mao, Ning & Qi, Meng & Jin, Tao, 2024. "Exploring the stability and dynamic responses of dual-stage series ORC using LNG cold energy for sustainable power generation," Applied Energy, Elsevier, vol. 372(C).
    13. Qyyum, Muhammad Abdul & Ali, Wahid & Long, Nguyen Van Duc & Khan, Mohd Shariq & Lee, Moonyong, 2018. "Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine," Energy, Elsevier, vol. 144(C), pages 968-976.
    14. Ancona, M.A. & Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Mormile, M. & Palella, M. & Scarponi, L.B., 2018. "Investigation on small-scale low pressure LNG production process," Applied Energy, Elsevier, vol. 227(C), pages 672-685.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    2. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    3. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    4. Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
    5. He, Tianbiao & Ju, Yonglin, 2015. "Optimal synthesis of expansion liquefaction cycle for distributed-scale LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 88(C), pages 268-280.
    6. Sanavandi, Hamid & Mafi, Mostafa & Ziabasharhagh, Masoud, 2019. "Normalized sensitivity analysis of LNG processes - Case studies: Cascade and single mixed refrigerant systems," Energy, Elsevier, vol. 188(C).
    7. He, Tianbiao & Mao, Ning & Liu, Zuming & Qyyum, Muhammad Abdul & Lee, Moonyong & Pravez, Ashak Mahmud, 2020. "Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes," Energy, Elsevier, vol. 199(C).
    8. Qyyum, Muhammad Abdul & Ali, Wahid & Long, Nguyen Van Duc & Khan, Mohd Shariq & Lee, Moonyong, 2018. "Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine," Energy, Elsevier, vol. 144(C), pages 968-976.
    9. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    10. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    11. Xu, Xiongwen & Liu, Jinping & Cao, Le & Pang, Weiqiang, 2014. "Automatically varying the composition of a mixed refrigerant solution for single mixed refrigerant LNG (liquefied natural gas) process at changing working conditions," Energy, Elsevier, vol. 64(C), pages 931-941.
    12. Mortazavi, Amir & Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2014. "Novel combined cycle configurations for propane pre-cooled mixed refrigerant (APCI) natural gas liquefaction cycle," Applied Energy, Elsevier, vol. 117(C), pages 76-86.
    13. He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
    14. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    15. Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.
    16. Fazlollahi, Farhad & Bown, Alex & Ebrahimzadeh, Edris & Baxter, Larry L., 2015. "Design and analysis of the natural gas liquefaction optimization process- CCC-ES (energy storage of cryogenic carbon capture)," Energy, Elsevier, vol. 90(P1), pages 244-257.
    17. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    18. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2022. "Framework for embedding black-box simulation into mathematical programming via kriging surrogate model applied to natural gas liquefaction process optimization," Applied Energy, Elsevier, vol. 310(C).
    19. Ahmed, Rasel & Mahadzir, Shuhaimi & Ferdush, Jannatul & Matovu, Fahad & Mota-Babiloni, Adrián & Hafyan, Rendra Hakim, 2024. "Surrogate-assisted constrained hybrid particle swarm optimization algorithm for propane pre-cooled mixed refrigerant LNG process optimization," Energy, Elsevier, vol. 305(C).
    20. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:97:y:2016:i:c:p:350-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.