IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp176-191.html
   My bibliography  Save this article

Concept of dehumidification perfectness and its potential applications

Author

Listed:
  • Yang, Zili
  • Lian, Zhiwei
  • Li, Xi
  • Zhang, Kaisheng

Abstract

Liquid desiccant dehumidification system, which presents great potential for energy saving in HVAC industry, has drawn much attention in recent years. Various dehumidifiers have been proposed for achieving the better performance and are used to be evaluated by the indicator: dehumidification effectiveness. However, this widely-used indicator is found varying significantly with the operational conditions and cannot distinguish the inherent mass transfer capability of dehumidifiers from the influence of the properties of airstream and desiccant. In view of this, this paper presents a novel concept named dehumidification perfectness, based on the conversion laws of mass and energy, for realizing the impartial evaluation of the inherent mass transfer capability of dehumidifiers, getting rid of the influence from the airstream and desiccant solution. Experimental data from the open literatures was employed to validate the concept and its affecting factors were then discussed. It was found that higher degree of dehumidification perfectness was obtained with bigger/longer effective liquid–gas contact area/time provided by the dehumidifier. Furthermore, with different properties of various dehumidifiers, such as the surface area densities of packing, their dehumidification perfectness was varying significantly. The concept developed here demonstrates promising potentials for comparing, predicting and improving the performance of various dehumidifiers.

Suggested Citation

  • Yang, Zili & Lian, Zhiwei & Li, Xi & Zhang, Kaisheng, 2015. "Concept of dehumidification perfectness and its potential applications," Energy, Elsevier, vol. 91(C), pages 176-191.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:176-191
    DOI: 10.1016/j.energy.2015.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501110X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, X.H. & Jiang, Y. & Yi, X.Q., 2009. "Effect of regeneration mode on the performance of liquid desiccant packed bed regenerator," Renewable Energy, Elsevier, vol. 34(1), pages 209-216.
    2. Lychnos, G. & Davies, P.A., 2012. "Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates," Energy, Elsevier, vol. 40(1), pages 116-130.
    3. Gao, W.Z. & Liu, J.H. & Cheng, Y.P. & Zhang, X.L., 2012. "Experimental investigation on the heat and mass transfer between air and liquid desiccant in a cross-flow dehumidifier," Renewable Energy, Elsevier, vol. 37(1), pages 117-123.
    4. Liu, X.H. & Qu, K.Y. & Jiang, Y., 2006. "Empirical correlations to predict the performance of the dehumidifier using liquid desiccant in heat and mass transfer," Renewable Energy, Elsevier, vol. 31(10), pages 1627-1639.
    5. Abdul-Wahab, S.A. & Zurigat, Y.H. & Abu-Arabi, M.K., 2004. "Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier," Energy, Elsevier, vol. 29(1), pages 19-34.
    6. Salah Hassan, M. & Hassan, A.A.M., 2009. "Performance of a proposed complete wetting surface counter flow channel type liquid desiccant air dehumidifier," Renewable Energy, Elsevier, vol. 34(10), pages 2107-2116.
    7. Liu, X.H. & Jiang, Y. & Chang, X.M. & Yi, X.Q., 2007. "Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator," Renewable Energy, Elsevier, vol. 32(10), pages 1623-1636.
    8. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zili & Zhang, Kaisheng & Lian, Zhiwei & Zhang, Huibo, 2016. "Sensitivity and stability analysis on the performance of ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 112(C), pages 1169-1183.
    2. Ali, Ameer & Ishaque, Kashif & Lashin, Aref & Al Arifi, Nassir, 2017. "Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation," Energy, Elsevier, vol. 118(C), pages 578-589.
    3. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    4. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    5. Yon, Hao Ren & Cai, Wenjian & Wang, Youyi & Shen, Suping, 2018. "Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition," Applied Energy, Elsevier, vol. 211(C), pages 249-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zendehboudi, Alireza & Tatar, Afshin & Li, Xianting, 2017. "A comparative study and prediction of the liquid desiccant dehumidifiers using intelligent models," Renewable Energy, Elsevier, vol. 114(PB), pages 1023-1035.
    2. She, Xiaohui & Yin, Yonggao & Zhang, Xiaosong, 2015. "Suggested solution concentration for an energy-efficient refrigeration system combined with condensation heat-driven liquid desiccant cycle," Renewable Energy, Elsevier, vol. 83(C), pages 553-564.
    3. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    4. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    5. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    6. Yin, Yonggao & Qian, Junfei & Zhang, Xiaosong, 2014. "Recent advancements in liquid desiccant dehumidification technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 38-52.
    7. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    8. Wen, Tao & Luo, Yimo & Wang, Meng & She, Xiaohui, 2021. "Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate," Renewable Energy, Elsevier, vol. 167(C), pages 841-852.
    9. Kashish Kumar & Alok Singh & Saboor Shaik & C Ahamed Saleel & Abdul Aabid & Muneer Baig, 2022. "Comparative Analysis on Dehumidification Performance of KCOOH–LiCl Hybrid Liquid Desiccant Air-Conditioning System: An Energy-Saving Approach," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    10. Xie, Ying & Zhang, Tao & Liu, Xiaohua, 2016. "Performance investigation of a counter-flow heat pump driven liquid desiccant dehumidification system," Energy, Elsevier, vol. 115(P1), pages 446-457.
    11. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    12. Islam, M.R. & Alan, S.W.L. & Chua, K.J., 2018. "Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling," Applied Energy, Elsevier, vol. 221(C), pages 334-347.
    13. Yang, Zili & Zhang, Kaisheng & Lian, Zhiwei & Zhang, Huibo, 2016. "Sensitivity and stability analysis on the performance of ultrasonic atomization liquid desiccant dehumidification system," Energy, Elsevier, vol. 112(C), pages 1169-1183.
    14. Yang, Zili & Zhang, Kaisheng & Hwang, Yunho & Lian, Zhiwei, 2016. "Performance investigation on the ultrasonic atomization liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 171(C), pages 12-25.
    15. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.
    16. Yang, C.M. & Chen, C.C. & Chen, S.L., 2013. "Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger," Energy, Elsevier, vol. 59(C), pages 467-477.
    17. Lychnos, G. & Davies, P.A., 2012. "Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates," Energy, Elsevier, vol. 40(1), pages 116-130.
    18. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
    19. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    20. Luo, Yimo & Yang, Hongxing & Lu, Lin & Qi, Ronghui, 2014. "A review of the mathematical models for predicting the heat and mass transfer process in the liquid desiccant dehumidifier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 587-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:176-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.