IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v86y2015icp19-30.html
   My bibliography  Save this article

Impact on vehicle fuel economy of the soot loading on diesel particulate filters made of different substrate materials

Author

Listed:
  • Millo, Federico
  • Andreata, Maurizio
  • Rafigh, Mahsa
  • Mercuri, Davide
  • Pozzi, Chiara

Abstract

Wall flow DPFs (Diesel Particulate Filters) are nowadays universally adopted for all European passenger cars.

Suggested Citation

  • Millo, Federico & Andreata, Maurizio & Rafigh, Mahsa & Mercuri, Davide & Pozzi, Chiara, 2015. "Impact on vehicle fuel economy of the soot loading on diesel particulate filters made of different substrate materials," Energy, Elsevier, vol. 86(C), pages 19-30.
  • Handle: RePEc:eee:energy:v:86:y:2015:i:c:p:19-30
    DOI: 10.1016/j.energy.2015.03.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    2. Millo, Federico & Giacominetto, Paolo Ferrero & Bernardi, Marco Gianoglio, 2012. "Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines," Applied Energy, Elsevier, vol. 98(C), pages 79-91.
    3. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.
    4. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.
    5. Lapuerta, Magín & Rodríguez-Fernández, José & Oliva, Fermín, 2012. "Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions," Energy, Elsevier, vol. 47(1), pages 543-552.
    6. Choi, Seungmok & Oh, Kwang-Chul & Lee, Chun-Bum, 2014. "The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters," Energy, Elsevier, vol. 77(C), pages 327-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    2. McCaffery, Cavan & Yang, Jiacheng & Karavalakis, Georgios & Yoon, Seungju & Johnson, Kent C. & Miller, J. Wayne & Durbin, Thomas D., 2022. "Evaluation of small off-road diesel engine emissions and aftertreatment systems," Energy, Elsevier, vol. 251(C).
    3. Liu, Junheng & Yang, Jun & Sun, Ping & Ji, Qian & Meng, Jian & Wang, Pan, 2018. "Experimental investigation of in-cylinder soot distribution and exhaust particle oxidation characteristics of a diesel engine with nano-CeO2 catalytic fuel," Energy, Elsevier, vol. 161(C), pages 17-27.
    4. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    5. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    6. Orihuela, M. Pilar & Chacartegui, Ricardo & Martínez-Fernández, Julián, 2020. "New biomorphic filters to face upcoming particulate emissions policies: A review of the FIL-BIO-DIESEL project," Energy, Elsevier, vol. 201(C).
    7. Torregrosa, Antonio José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2017. "Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters," Energy, Elsevier, vol. 119(C), pages 887-900.
    8. Kim, Junghwan & Kim, Keunsoo & Oh, Seungmook & Lee, Sunyoup, 2016. "An assessment of the biodiesel low-temperature combustion engine under transient cycles using single-cylinder engine experiment and cycle simulation," Energy, Elsevier, vol. 95(C), pages 471-482.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    2. Bermúdez, Vicente & Serrano, José Ramón & Piqueras, Pedro & Campos, Daniel, 2015. "Analysis of the influence of pre-DPF water injection technique on pollutants emission," Energy, Elsevier, vol. 89(C), pages 778-792.
    3. Choi, Seungmok & Oh, Kwang-Chul & Lee, Chun-Bum, 2014. "The effects of filter porosity and flow conditions on soot deposition/oxidation and pressure drop in particulate filters," Energy, Elsevier, vol. 77(C), pages 327-337.
    4. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    5. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    6. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    7. Luján, José Manuel & Bermúdez, Vicente & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation," Energy, Elsevier, vol. 80(C), pages 599-613.
    8. Ye, Jiahao & E, Jiaqiang & Peng, Qingguo, 2023. "Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance," Energy, Elsevier, vol. 263(PE).
    9. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    10. Chen, Jingwei & E, Jiaqiang & Kang, Siyi & Zhao, Xiaohuan & Zhu, Hao & Deng, Yuanwang & Peng, Qingguo & Zhang, Zhiqing, 2019. "Modeling and characterization of the mass transfer and thermal mechanics of the power lithium manganate battery under charging process," Energy, Elsevier, vol. 187(C).
    11. Eugenio Meloni & Bruno Rossomando & Gianluigi De Falco & Mariano Sirignano & Ivan Arsie & Vincenzo Palma, 2023. "Effect of a Cu-Ferrite Catalyzed DPF on the Ultrafine Particle Emissions from a Light-Duty Diesel Engine," Energies, MDPI, vol. 16(10), pages 1-19, May.
    12. Seok, Jungmin & Chun, Kwang Min & Song, Soonho & Lee, Jeongmin, 2014. "An empirical study of the dry soot filtration behavior of a metal foam filter on a particle number concentration basis," Energy, Elsevier, vol. 76(C), pages 949-957.
    13. Serrano, J.R. & Climent, H. & Piqueras, P. & Angiolini, E., 2014. "Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement," Applied Energy, Elsevier, vol. 132(C), pages 507-523.
    14. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.
    15. Kazuhiro Yamamoto & Yusei Akai & Naoki Hayashi, 2022. "Numerical Simulation of Spray Combustion with Ultrafine Oxygen Bubbles," Energies, MDPI, vol. 15(22), pages 1-15, November.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    17. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    18. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    19. Park, Jungsoo & Song, Soonho & Lee, Kyo Seung, 2015. "Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization," Applied Energy, Elsevier, vol. 142(C), pages 21-32.
    20. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:86:y:2015:i:c:p:19-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.