IDEAS home Printed from
   My bibliography  Save this article

Cost-potentials for large onshore wind turbines in Europe


  • McKenna, R.
  • Hollnaicher, S.
  • Ostman v. d. Leye, P.
  • Fichtner, W.


Against the background of the recent trend towards ever larger wind turbines at higher hub heights, this contribution determines the total technical potential and associated costs for electricity generation in Europe with large turbines, based on a GIS-based methodology employing cost-potential curves. For the EU28 and Europe technical potentials of 15 PWh/a and 20 PWh/a are determined respectively, with associated LCOEs (Levelized Costs of Electricity) of between 6 and 50 €ct/kWh and large variations between countries: the largest potentials and lowest generation costs are to be found in the UK, Poland and Sweden. The approximate required investment to meet national 2020 targets based on the National Renewable Energy Action Plans is estimated based on the model results. A comparison with the results of other studies shows significant deviations in the results, most of which can be explained through the differences in input parameters, and a comparison of the obtained results for Germany with those from a previous study under the same assumptions produced very similar results with a deviation of about 10%. A sensitivity analysis showed that the results are only moderately sensitive to the assumed discount rate as well as the size of turbines available.

Suggested Citation

  • McKenna, R. & Hollnaicher, S. & Ostman v. d. Leye, P. & Fichtner, W., 2015. "Cost-potentials for large onshore wind turbines in Europe," Energy, Elsevier, vol. 83(C), pages 217-229.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:217-229
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. McKenna, R. & Hollnaicher, S. & Fichtner, W., 2014. "Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany," Applied Energy, Elsevier, vol. 115(C), pages 103-115.
    2. Schallenberg-Rodriguez, Julieta, 2013. "A methodological review to estimate techno-economical wind energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 272-287.
    3. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    4. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    5. Ederer, Nikolaus, 2014. "The right size matters: Investigating the offshore wind turbine market equilibrium," Energy, Elsevier, vol. 68(C), pages 910-921.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    2. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    3. Slednev, Viktor & Bertsch, Valentin & Ruppert, Manuel & Fichtner, Wolf, 2017. "Highly resolved optimal renewable allocation planning in power systems under consideration of dynamic grid topology," MPRA Paper 79706, University Library of Munich, Germany.
    4. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    5. Sliz-Szkliniarz, B. & Eberbach, J. & Hoffmann, B. & Fortin, M., 2019. "Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 514-531.
    6. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    7. Rečka, L. & Ščasný, M., 2016. "Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050," Energy, Elsevier, vol. 108(C), pages 19-33.
    8. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.

    More about this item


    Wind energy; Cost-potentials; Europe;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:217-229. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.