IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp627-644.html
   My bibliography  Save this article

Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm

Author

Listed:
  • Wang, Jianzhou
  • Jiang, He
  • Wu, Yujie
  • Dong, Yao

Abstract

Due to energy crisis and environmental problems, it is very urgent to find alternative energy sources nowadays. Solar energy, as one of the great potential clean energies, has widely attracted the attention of researchers. In this paper, an optimized hybrid method by CS (Cuckoo Search) on the basis of the OP-ELM (Optimally Pruned Extreme Learning Machine), called CS-OP-ELM, is developed to forecast clear sky and real sky global horizontal radiation. First, MRSR (Multiresponse Sparse Regression) and LOO-CV (leave-one-out cross-validation) can be applied to rank neurons and prune the possibly meaningless neurons of the FFNN (Feed Forward Neural Network), respectively. Then, Direct strategy and Direct-Recursive strategy based on OP-ELM are introduced to build a hybrid model. Furthermore, CS (Cuckoo Search) optimized algorithm is employed to determine the proper weight coefficients. In order to verify the effectiveness of the developed method, hourly solar radiation data from six sites of the United States has been collected, and methods like ARMA (Autoregression moving average), BP (Back Propagation) neural network and OP-ELM can be compared with CS-OP-ELM. Experimental results show the optimized hybrid method CS-OP-ELM has the best forecasting performance.

Suggested Citation

  • Wang, Jianzhou & Jiang, He & Wu, Yujie & Dong, Yao, 2015. "Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm," Energy, Elsevier, vol. 81(C), pages 627-644.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:627-644
    DOI: 10.1016/j.energy.2015.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215000134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, G. & Batlles, F.J. & Tovar-Pescador, J., 2005. "Selection of input parameters to model direct solar irradiance by using artificial neural networks," Energy, Elsevier, vol. 30(9), pages 1675-1684.
    2. Dong, Yao & Wang, Jianzhou & Jiang, He & Shi, Xiaomeng, 2013. "Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China," Applied Energy, Elsevier, vol. 109(C), pages 239-253.
    3. Dorvlo, Atsu S. S. & Jervase, Joseph A. & Al-Lawati, Ali, 2002. "Solar radiation estimation using artificial neural networks," Applied Energy, Elsevier, vol. 71(4), pages 307-319, April.
    4. Santos, J.M. & Pinazo, J.M. & Cañada, J., 2003. "Methodology for generating daily clearness index index values Kt starting from the monthly average daily value K̄t. Determining the daily sequence using stochastic models," Renewable Energy, Elsevier, vol. 28(10), pages 1523-1544.
    5. Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2012. "Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation," Energy, Elsevier, vol. 39(1), pages 341-355.
    6. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Gong & Fei Huang & Wei Zhang & Yanming Li & Chengliang Liu, 2023. "Precise Short-Term Small-Area Sunshine Forecasting for Optimal Seedbed Scheduling in Plant Factories," Agriculture, MDPI, vol. 13(9), pages 1-19, September.
    2. Acikgoz, Hakan, 2022. "A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting," Applied Energy, Elsevier, vol. 305(C).
    3. Massrur, Hamid Reza & Niknam, Taher & Aghaei, Jamshid & Shafie-khah, Miadreza & Catalão, João P.S., 2018. "A stochastic mid-term scheduling for integrated wind-thermal systems using self-adaptive optimization approach: A comparative study," Energy, Elsevier, vol. 155(C), pages 552-564.
    4. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    5. Nesamalar, J. Jeslin Drusila & Venkatesh, P. & Raja, S. Charles, 2016. "Energy management by generator rescheduling in congestive deregulated power system," Applied Energy, Elsevier, vol. 171(C), pages 357-371.
    6. Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
    7. Neshat, Mehdi & Nezhad, Meysam Majidi & Mirjalili, Seyedali & Garcia, Davide Astiaso & Dahlquist, Erik & Gandomi, Amir H., 2023. "Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy," Energy, Elsevier, vol. 278(C).
    8. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    9. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2015. "Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1093-1106.
    10. Cheng-Ming Lee & Chia-Nan Ko, 2016. "Short-Term Load Forecasting Using Adaptive Annealing Learning Algorithm Based Reinforcement Neural Network," Energies, MDPI, vol. 9(12), pages 1-15, November.
    11. Ines Sansa & Zina Boussaada & Najiba Mrabet Bellaaj, 2021. "Solar Radiation Prediction Using a Novel Hybrid Model of ARMA and NARX," Energies, MDPI, vol. 14(21), pages 1-26, October.
    12. Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search," Energies, MDPI, vol. 9(10), pages 1-17, October.
    13. Xuejiao Ma & Dandan Liu, 2016. "Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting," Energies, MDPI, vol. 9(8), pages 1-34, August.
    14. Si-Ya Wang & Jun Qiu & Fang-Fang Li, 2018. "Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records," Energies, MDPI, vol. 11(6), pages 1-17, May.
    15. Akarslan, Emre & Hocaoglu, Fatih Onur, 2016. "A novel adaptive approach for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 87(P1), pages 628-633.
    16. Geng, ZhiQiang & Qin, Lin & Han, YongMing & Zhu, QunXiong, 2017. "Energy saving and prediction modeling of petrochemical industries: A novel ELM based on FAHP," Energy, Elsevier, vol. 122(C), pages 350-362.
    17. Tan, Peng & Xia, Ji & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2016. "Modeling and reduction of NOX emissions for a 700 MW coal-fired boiler with the advanced machine learning method," Energy, Elsevier, vol. 94(C), pages 672-679.
    18. Kaur, Amanpreet & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Net load forecasting for high renewable energy penetration grids," Energy, Elsevier, vol. 114(C), pages 1073-1084.
    19. Bisoi, Ranjeeta & Dash, Deepak Ranjan & Dash, P.K. & Tripathy, Lokanath, 2022. "An efficient robust optimized functional link broad learning system for solar irradiance prediction," Applied Energy, Elsevier, vol. 319(C).
    20. Zhang, Chu & Hua, Lei & Ji, Chunlei & Shahzad Nazir, Muhammad & Peng, Tian, 2022. "An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine," Applied Energy, Elsevier, vol. 322(C).
    21. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    2. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    3. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    4. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    5. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    6. Varo, M. & Pedrós, G. & Martínez-Jiménez, P. & Aguilera, M.J., 2006. "Global solar irradiance in Cordoba: Clearness index distributions conditioned to the optical air mass," Renewable Energy, Elsevier, vol. 31(9), pages 1321-1332.
    7. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    8. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    9. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    10. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    11. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    12. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    13. Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
    14. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    15. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    16. Temiz, Mert & Dincer, Ibrahim, 2022. "A unique ocean and solar based multigenerational system with hydrogen production and thermal energy storage for Arctic communities," Energy, Elsevier, vol. 239(PB).
    17. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    18. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    19. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    20. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:627-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.