IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp720-731.html
   My bibliography  Save this article

Thermal energy generation and distribution in friction stir welding of aluminum alloys

Author

Listed:
  • Su, H.
  • Wu, C.S.
  • Pittner, A.
  • Rethmeier, M.

Abstract

The accurate prediction of the thermal energy generation and distribution in friction stir welding process is of great significance for the optimization of the process parameters and the understanding of the underlying mechanisms. In this study, a new method of integrative calculation and measurement is proposed to obtain the more reasonable values of the frictional coefficient and the slip rate, which are both used to characterize the heat generation rate at the tool-workpiece contact interfaces. A three-dimensional model is established to fully couple the energy generation, heat transfer and material flow in friction stir welding of aluminum alloys. The energy produced by both interfacial friction and plastic deformation are taken into consideration. The analysis accuracy of the thermal energy generation and distribution is improved, and the distribution features of thermal energy density in the vicinity of the tool are elucidated. The predicted peak temperature values at some locations are in agreement with the experimentally measured ones.

Suggested Citation

  • Su, H. & Wu, C.S. & Pittner, A. & Rethmeier, M., 2014. "Thermal energy generation and distribution in friction stir welding of aluminum alloys," Energy, Elsevier, vol. 77(C), pages 720-731.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:720-731
    DOI: 10.1016/j.energy.2014.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Chin-Hyung & Chang, Kyong-Ho, 2013. "Failure pressure of a pressurized girth-welded super duplex stainless steel pipe in reverse osmosis desalination plants," Energy, Elsevier, vol. 61(C), pages 565-574.
    2. Jiang, Wenchun & Fan, Qinshan & Gong, Jianming, 2010. "Optimization of welding joint between tower and bottom flange based on residual stress considerations in a wind turbine," Energy, Elsevier, vol. 35(1), pages 461-467.
    3. Li, Yan & Feng, Yanhui & Zhang, Xinxin & Wu, Chuansong, 2014. "Energy propagation in plasma arc welding with keyhole tracking," Energy, Elsevier, vol. 64(C), pages 1044-1056.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, ZuMing & Fang, YueXiao & Chen, ShiYu & Zhang, Tao & Lv, ZhenYu & Luo, Zhen, 2019. "Focusing cathode tip characteristics in cooling tungsten," Energy, Elsevier, vol. 167(C), pages 982-993.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, ZuMing & Fang, YueXiao & Chen, ShiYu & Zhang, Tao & Lv, ZhenYu & Luo, Zhen, 2019. "Focusing cathode tip characteristics in cooling tungsten," Energy, Elsevier, vol. 167(C), pages 982-993.
    2. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    3. Li, Yan & Feng, Yanhui & Zhang, Xinxin & Wu, Chuansong, 2014. "Energy propagation in plasma arc welding with keyhole tracking," Energy, Elsevier, vol. 64(C), pages 1044-1056.
    4. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    5. Lee, Chin-Hyung & Chang, Kyong-Ho, 2013. "Failure pressure of a pressurized girth-welded super duplex stainless steel pipe in reverse osmosis desalination plants," Energy, Elsevier, vol. 61(C), pages 565-574.
    6. Alberto Pliego Marugán & Fausto Pedro García Márquez & Jesús María Pinar Pérez, 2016. "Optimal Maintenance Management of Offshore Wind Farms," Energies, MDPI, vol. 9(1), pages 1-20, January.
    7. Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:720-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.