IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp422-434.html
   My bibliography  Save this article

Design strategy for improving the energy efficiency in series hydraulic/electric synergy system

Author

Listed:
  • Ramakrishnan, R.
  • Hiremath, Somashekhar S.
  • Singaperumal, M.

Abstract

Battery is a vital subsystem in an electric vehicle with regenerative braking system. The energy efficiency of an electric vehicle is improved by storing the regenerated energy in an electric battery, during braking, and reusing it during subsequent acceleration. Battery possesses a relatively poor power density and slow charging of regenerated energy, when compared to hydro-pneumatic accumulators. A series hydraulic/electric synergy system – an energy efficient mechatronics system is proposed to overcome the drawbacks in the conventional electric vehicle with regenerative braking. Even though, electric battery provides higher energy density than the accumulator system, optimal sizing of the hydro-pneumatic accumulator and other process parameters in the system to provide better energy density and efficiency. However, a trade-off prevails between the system energy delivered and energy consumed. This gives rise to a multiple objective problem. The proposed multi-objective design optimization procedure based on an evolutionary strategy algorithm maximizes the energy efficiency of the system. The system simulation results after optimization show that, the optimal system parameters increase the energy efficiency by 3% and hydraulic regeneration efficiency by 17.3%. The suggested design methodology provides a basis for the design of a series hydraulic/electric synergy system as energy efficient and zero emission system.

Suggested Citation

  • Ramakrishnan, R. & Hiremath, Somashekhar S. & Singaperumal, M., 2014. "Design strategy for improving the energy efficiency in series hydraulic/electric synergy system," Energy, Elsevier, vol. 67(C), pages 422-434.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:422-434
    DOI: 10.1016/j.energy.2014.01.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amjad, Shaik & Rudramoorthy, R. & Neelakrishnan, S. & Sri Raja Varman, K. & Arjunan, T.V., 2011. "Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler," Energy, Elsevier, vol. 36(3), pages 1623-1629.
    2. Hui, Sun & Lifu, Yang & Junqing, Jing, 2010. "Hydraulic/electric synergy system (HESS) design for heavy hybrid vehicles," Energy, Elsevier, vol. 35(12), pages 5328-5335.
    3. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    4. Puddu, Pierpaolo & Paderi, Maurizio, 2013. "Hydro-pneumatic accumulators for vehicles kinetic energy storage: Influence of gas compressibility and thermal losses on storage capability," Energy, Elsevier, vol. 57(C), pages 326-335.
    5. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    6. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, Hyukjoon & Sprengel, Michael & Ivantysynova, Monika, 2016. "Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis," Energy, Elsevier, vol. 116(P1), pages 650-660.
    2. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    3. Hyukjoon Kwon & Monika Ivantysynova, 2020. "System Characteristics Analysis for Energy Management of Power-Split Hydraulic Hybrids," Energies, MDPI, vol. 13(7), pages 1-23, April.
    4. Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
    5. Xiaobin Ning & Jiazheng Wang & Yuming Yin & Jiarong Shangguan & Nanxin Bao & Ning Li, 2023. "Regenerative Braking Algorithm for Parallel Hydraulic Hybrid Vehicles Based on Fuzzy Q-Learning," Energies, MDPI, vol. 16(4), pages 1-18, February.
    6. Zhang, Shiyou & Peng, Keming & Wei, Wenlong & Tang, Siqi & Yao, Jin, 2021. "The matrix method of energy analysis and energy-saving design on the electromechanical system," Energy, Elsevier, vol. 224(C).
    7. Bhola, M. & Kumar, N. & Ghoshal, S.K., 2018. "Reducing fuel consumption of Front End Loader using regenerative hydro-static drive configuration-an experimental study," Energy, Elsevier, vol. 162(C), pages 158-170.
    8. Zhang, Haoxiang & Wang, Feng & Xu, Bing & Fiebig, Wieslaw, 2022. "Extending battery lifetime for electric wheel loaders with electric-hydraulic hybrid powertrain," Energy, Elsevier, vol. 261(PB).
    9. Liu, Huanlong & Jiang, Yue & Li, Shun, 2019. "Design and downhill speed control of an electric-hydrostatic hydraulic hybrid powertrain in battery-powered rail vehicles," Energy, Elsevier, vol. 187(C).
    10. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    11. Ma, Yufei & Guan, Guoqing & Hao, Xiaogang & Cao, Ji & Abudula, Abuliti, 2017. "Molybdenum carbide as alternative catalyst for hydrogen production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1101-1129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    2. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    3. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    4. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
    5. Tarroja, Brian & Shaffer, Brendan & Samuelsen, Scott, 2015. "The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies," Energy, Elsevier, vol. 87(C), pages 504-519.
    6. Kheradmand-Khanekehdani, Habiballah & Gitizadeh, Mohsen, 2018. "Well-being analysis of distribution network in the presence of electric vehicles," Energy, Elsevier, vol. 155(C), pages 610-619.
    7. Raslavičius, Laurencas & Starevičius, Martynas & Keršys, Artūras & Pilkauskas, Kęstutis & Vilkauskas, Andrius, 2013. "Performance of an all-electric vehicle under UN ECE R101 test conditions: A feasibility study for the city of Kaunas, Lithuania," Energy, Elsevier, vol. 55(C), pages 436-448.
    8. Amjad, Shaik & Rudramoorthy, R. & Sadagopan, P. & Neelakrishnan, S., 2016. "Implementation and evaluation of change-over speed in plug-in hybrid electric two wheeler," Energy, Elsevier, vol. 109(C), pages 858-865.
    9. Colmenar-Santos, Antonio & Borge-Diez, David & Ortega-Cabezas, Pedro Miguel & Míguez-Camiña, J.V., 2014. "Macro economic impact, reduction of fee deficit and profitability of a sustainable transport model based on electric mobility. Case study: City of León (Spain)," Energy, Elsevier, vol. 65(C), pages 303-318.
    10. Lena Ahmadi & Ali Elkamel & Sabah A. Abdul-Wahab & Michael Pan & Eric Croiset & Peter L. Douglas & Evgueniy Entchev, 2015. "Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration," Energies, MDPI, vol. 8(5), pages 1-25, May.
    11. Latas, Waldemar & Stojek, Jerzy, 2018. "A new type of hydrokinetic accumulator and its simulation in hydraulic lift with energy recovery system," Energy, Elsevier, vol. 153(C), pages 836-848.
    12. Zhang, Shuo & Xiong, Rui & Zhang, Chengning & Sun, Fengchun, 2016. "An optimal structure selection and parameter design approach for a dual-motor-driven system used in an electric bus," Energy, Elsevier, vol. 96(C), pages 437-448.
    13. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2013. "Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes," Energy, Elsevier, vol. 61(C), pages 432-439.
    14. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    15. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei, 2017. "Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle," Energy, Elsevier, vol. 123(C), pages 89-107.
    16. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    17. Yang Yang & Chang Luo & Pengxi Li, 2017. "Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH) Vehicle," Energies, MDPI, vol. 10(7), pages 1-18, July.
    18. Madzharov, D. & Delarue, E. & D'haeseleer, W., 2014. "Integrating electric vehicles as flexible load in unit commitment modeling," Energy, Elsevier, vol. 65(C), pages 285-294.
    19. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    20. Božič, Dušan & Pantoš, Miloš, 2015. "Impact of electric-drive vehicles on power system reliability," Energy, Elsevier, vol. 83(C), pages 511-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:422-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.