IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp598-609.html
   My bibliography  Save this article

Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data

Author

Listed:
  • Lukač, Niko
  • Seme, Sebastijan
  • Žlaus, Danijel
  • Štumberger, Gorazd
  • Žalik, Borut

Abstract

One of the major challenges today is assessing the suitability of PV (photovoltaic) systems' installations on buildings' roofs regarding the received solar irradiance. The availability of aerial laser-scanning, namely LiDAR (Light Detection And Ranging), means that assessment can be performed automatically over large-scale urban areas in high accuracy by considering surfaces' topographies, long-term direct and diffuse irradiance measurements, and influences of shadowing. The solar potential metric was introduced for this purpose, however it fails to provide any insights into the production of electrical energy by a specific PV system. Hence, the PV potential metric can be used that integrates received instantaneous irradiance which is then multiplied by the PV system's efficiency characteristics. Many existing PV potential metrics over LiDAR data consider the PV modules' efficiencies to be constant, when in reality they are nonlinear. This paper presents a novel PV potential estimation over LiDAR data, where the PV modules' and solar inverter's nonlinear efficiency characteristics are approximated by modelled functions. The estimated electrical energy production from buildings' roofs within an urban area was extensively analysed by comparing the constant and nonlinear efficiency characteristics of different PV module types and solar inverters. The obtained results were confirmed through measurements performed on an existing PV system.

Suggested Citation

  • Lukač, Niko & Seme, Sebastijan & Žlaus, Danijel & Štumberger, Gorazd & Žalik, Borut, 2014. "Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data," Energy, Elsevier, vol. 66(C), pages 598-609.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:598-609
    DOI: 10.1016/j.energy.2013.12.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213011365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, K.H. & Lai, T.M. & Lo, W.C. & To, W.M., 2012. "The application of dynamic modelling techniques to the grid-connected PV (photovoltaic) systems," Energy, Elsevier, vol. 46(1), pages 264-274.
    2. Li, Huashan & Bu, Xianbiao & Long, Zhen & Zhao, Liang & Ma, Weibin, 2012. "Calculating the diffuse solar radiation in regions without solar radiation measurements," Energy, Elsevier, vol. 44(1), pages 611-615.
    3. Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.
    4. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    5. Linares-Rodriguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vazquez, David & Tovar-Pescador, Joaquin, 2013. "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images," Energy, Elsevier, vol. 61(C), pages 636-645.
    6. Strzalka, Aneta & Alam, Nazmul & Duminil, Eric & Coors, Volker & Eicker, Ursula, 2012. "Large scale integration of photovoltaics in cities," Applied Energy, Elsevier, vol. 93(C), pages 413-421.
    7. Khorasanizadeh, H. & Mohammadi, K., 2013. "Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran," Energy, Elsevier, vol. 51(C), pages 257-266.
    8. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    9. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    10. Ruiz-Arias, J.A. & Terrados, J. & Pérez-Higueras, P. & Pozo-Vázquez, D. & Almonacid, G., 2012. "Assessment of the renewable energies potential for intensive electricity production in the province of Jaén, southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2994-3001.
    11. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Estimation of monthly solar radiation distribution for solar energy system analysis," Energy, Elsevier, vol. 36(2), pages 1319-1323.
    12. Notton, G. & Lazarov, V. & Stoyanov, L., 2010. "Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations," Renewable Energy, Elsevier, vol. 35(2), pages 541-554.
    13. Kucuksari, Sadik & Khaleghi, Amirreza M. & Hamidi, Maryam & Zhang, Ye & Szidarovszky, Ferenc & Bayraksan, Guzin & Son, Young-Jun, 2014. "An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments," Applied Energy, Elsevier, vol. 113(C), pages 1601-1613.
    14. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    15. Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A note on diffuse solar radiation on a tilted surface," Energy, Elsevier, vol. 34(11), pages 1764-1769.
    16. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.
    17. Lukač, Niko & Žlaus, Danijel & Seme, Sebastijan & Žalik, Borut & Štumberger, Gorazd, 2013. "Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data," Applied Energy, Elsevier, vol. 102(C), pages 803-812.
    18. Linares-Rodríguez, Alvaro & Ruiz-Arias, José Antonio & Pozo-Vázquez, David & Tovar-Pescador, Joaquín, 2011. "Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks," Energy, Elsevier, vol. 36(8), pages 5356-5365.
    19. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    20. Arboit, M. & Diblasi, A. & Fernández Llano, J.C. & de Rosa, C., 2008. "Assessing the solar potential of low-density urban environments in Andean cities with desert climates: The case of the city of Mendoza, in Argentina," Renewable Energy, Elsevier, vol. 33(8), pages 1733-1748.
    21. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elham Fakhraian & Marc Alier & Francesc Valls Dalmau & Alireza Nameni & Maria José Casañ Guerrero, 2021. "The Urban Rooftop Photovoltaic Potential Determination," Sustainability, MDPI, vol. 13(13), pages 1-18, July.
    2. Kovač, Marko & Stegnar, Gašper & Al-Mansour, Fouad & Merše, Stane & Pečjak, Andrej, 2019. "Assessing solar potential and battery instalment for self-sufficient buildings with simplified model," Energy, Elsevier, vol. 173(C), pages 1182-1195.
    3. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    4. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    5. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Yue Wu, 2017. "Assessment of Large Scale Photovoltaic Power Generation from Carport Canopies," Energies, MDPI, vol. 10(5), pages 1-22, May.
    6. Srećković, Nevena & Lukač, Niko & Žalik, Borut & Štumberger, Gorazd, 2016. "Determining roof surfaces suitable for the installation of PV (photovoltaic) systems, based on LiDAR (Light Detection And Ranging) data, pyranometer measurements, and distribution network configuratio," Energy, Elsevier, vol. 96(C), pages 404-414.
    7. Meskiana Boulahia & Kahina Amal Djiar & Miguel Amado, 2021. "Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria," Energies, MDPI, vol. 14(6), pages 1-16, March.
    8. Mohajeri, Nahid & Assouline, Dan & Guiboud, Berenice & Bill, Andreas & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2018. "A city-scale roof shape classification using machine learning for solar energy applications," Renewable Energy, Elsevier, vol. 121(C), pages 81-93.
    9. Phuong Minh Khuong & Russell McKenna & Wolf Fichtner, 2020. "A Cost-Effective and Transferable Methodology for Rooftop PV Potential Assessment in Developing Countries," Energies, MDPI, vol. 13(10), pages 1-46, May.
    10. Shakouri, Mahmoud & Lee, Hyun Woo & Kim, Yong-Woo, 2017. "A probabilistic portfolio-based model for financial valuation of community solar," Applied Energy, Elsevier, vol. 191(C), pages 709-726.
    11. Marcela Bindzarova Gergelova & Slavomir Labant & Stefan Kuzevic & Zofia Kuzevicova & Henrieta Pavolova, 2020. "Identification of Roof Surfaces from LiDAR Cloud Points by GIS Tools: A Case Study of Lučenec, Slovakia," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    12. Lukač, Niko & Špelič, Denis & Štumberger, Gorazd & Žalik, Borut, 2020. "Optimisation for large-scale photovoltaic arrays’ placement based on Light Detection And Ranging data," Applied Energy, Elsevier, vol. 263(C).
    13. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    14. Wong, Man Sing & Zhu, Rui & Liu, Zhizhao & Lu, Lin & Peng, Jinqing & Tang, Zhaoqin & Lo, Chung Ho & Chan, Wai Ki, 2016. "Estimation of Hong Kong’s solar energy potential using GIS and remote sensing technologies," Renewable Energy, Elsevier, vol. 99(C), pages 325-335.
    15. Luis Ramirez Camargo & Judith Franco & Nilsa María Sarmiento Babieri & Silvina Belmonte & Karina Escalante & Raphaela Pagany & Wolfgang Dorner, 2016. "Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina," Energies, MDPI, vol. 9(3), pages 1-21, February.
    16. Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
    17. Fretzen, Ulrich & Ansarin, Mohammad & Brandt, Tobias, 2021. "Temporal city-scale matching of solar photovoltaic generation and electric vehicle charging," Applied Energy, Elsevier, vol. 282(PA).
    18. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    19. Julieta, Schallenberg-Rodriguez & José-Julio, Rodrigo-Bello & Pablo, Yanez-Rosales, 2022. "A methodology to estimate the photovoltaic potential on parking spaces and water deposits. The case of the Canary Islands," Renewable Energy, Elsevier, vol. 189(C), pages 1046-1062.
    20. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.
    21. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    22. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    2. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    3. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    4. Yadav, Amit Kumar & Malik, Hasmat & Chandel, S.S., 2014. "Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 509-519.
    5. Assouline, Dan & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2018. "Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests," Applied Energy, Elsevier, vol. 217(C), pages 189-211.
    6. Thai, Clinton & Brouwer, Jack, 2021. "Challenges estimating distributed solar potential with utilization factors: California universities case study," Applied Energy, Elsevier, vol. 282(PB).
    7. Lukač, Niko & Seme, Sebastijan & Dežan, Katarina & Žalik, Borut & Štumberger, Gorazd, 2016. "Economic and environmental assessment of rooftops regarding suitability for photovoltaic systems installation based on remote sensing data," Energy, Elsevier, vol. 107(C), pages 854-865.
    8. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    9. Yang, Ying & Campana, Pietro Elia & Stridh, Bengt & Yan, Jinyue, 2020. "Potential analysis of roof-mounted solar photovoltaics in Sweden," Applied Energy, Elsevier, vol. 279(C).
    10. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    11. Tekai Eddine Khalil Zidane & Mohd Rafi Adzman & Mohammad Faridun Naim Tajuddin & Samila Mat Zali & Ali Durusu & Saad Mekhilef, 2020. "Optimal Design of Photovoltaic Power Plant Using Hybrid Optimisation: A Case of South Algeria," Energies, MDPI, vol. 13(11), pages 1-28, June.
    12. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    13. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    14. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    15. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    16. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    17. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    18. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    19. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    20. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:598-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.