IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics036054422301873x.html
   My bibliography  Save this article

A novel approach suggestion for assessing the impact of topographic shading on the estimation of the floating photovoltaic technical potential

Author

Listed:
  • Yilmaz, Osman Salih
  • Ateş, Ali Murat
  • Gülgen, Fatih

Abstract

This study presents a novel approach for the implementation of floating photovoltaic (FPV) systems at the Ayvalı hydroelectric power plant (HPP) in Türkiye. The method proposed in this study accounts for dynamic changes in water levels to accurately calculate the shading effects induced by topography. First, the minimum reservoir surface for the FPV system was calculated using remote sensing (RS). The minimum reservoir surface area, which was determined as 504.69 ha using 60 Sentinel-2 satellite images, was calculated using machine learning algorithms on the Google Earth Engine (GEE) platform, support vector machines (SVM) and automatic water extraction index (AWEI). In the second stage, new digital elevation model (DEM) maps were produced by overlapping monthly changes in water height with ALOS PALSAR data and solar analysis was performed on them. An annual global horizontal irradiance (GHI) map was produced using these maps, and it was divided into five classes to emphasize differences in production potential. The results revealed that 1083.45 GWh of electricity can be produced annually by installing FPV in very high and high potential areas. However, as the moderate, low, and very low regions represent only 5.02% of the reservoir surface and there is a 1.68-fold difference in production potential between the highest and lowest areas due to topography-induced shading near the coastline, it was concluded that FPV installation would not be efficient in those regions. This study highlights the significance of incorporating topography-induced shading and emphasizes the importance of employing RS and geographic information system (GIS) techniques to achieve this objective.

Suggested Citation

  • Yilmaz, Osman Salih & Ateş, Ali Murat & Gülgen, Fatih, 2023. "A novel approach suggestion for assessing the impact of topographic shading on the estimation of the floating photovoltaic technical potential," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422301873x
    DOI: 10.1016/j.energy.2023.128479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301873X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422301873x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.