IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp503-510.html
   My bibliography  Save this article

Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

Author

Listed:
  • Larsen, Ulrik
  • Pierobon, Leonardo
  • Wronski, Jorrit
  • Haglind, Fredrik

Abstract

Much attention is focused on increasing the energy efficiency to decrease fuel costs and CO2 emissions throughout industrial sectors. The ORC (organic Rankine cycle) is a relatively simple but efficient process that can be used for this purpose by converting low and medium temperature waste heat to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary conditions of the process. Hundreds of optimised cases with varied design parameters are used as observations in four multiple regression analyses. We analyse the model assumptions, prediction abilities and extrapolations, and compare the results with recent studies in the literature. The models are in agreement with the literature, and they present an opportunity for accurate prediction of the potential of an ORC to convert heat sources with temperatures from 80 to 360 °C, without detailed knowledge or need for simulation of the process.

Suggested Citation

  • Larsen, Ulrik & Pierobon, Leonardo & Wronski, Jorrit & Haglind, Fredrik, 2014. "Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles," Energy, Elsevier, vol. 65(C), pages 503-510.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:503-510
    DOI: 10.1016/j.energy.2013.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300875X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo, Chi-Ron & Hsu, Sung-Wei & Chang, Kai-Han & Wang, Chi-Chuan, 2011. "Analysis of a 50kW organic Rankine cycle system," Energy, Elsevier, vol. 36(10), pages 5877-5885.
    2. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    3. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    4. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    5. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    6. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    7. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    8. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baldi, Francesco & Gabrielii, Cecilia, 2015. "A feasibility analysis of waste heat recovery systems for marine applications," Energy, Elsevier, vol. 80(C), pages 654-665.
    2. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Yang, Youngmin, 2016. "Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications," Energy, Elsevier, vol. 102(C), pages 473-490.
    3. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    4. Ziviani, D. & Gusev, S. & Lecompte, S. & Groll, E.A. & Braun, J.E. & Horton, W.T. & van den Broek, M. & De Paepe, M., 2017. "Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander," Applied Energy, Elsevier, vol. 189(C), pages 416-432.
    5. Andreasen, J.G. & Larsen, U. & Knudsen, T. & Pierobon, L. & Haglind, F., 2014. "Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles," Energy, Elsevier, vol. 73(C), pages 204-213.
    6. Mondejar, Maria E. & Ahlgren, Fredrik & Thern, Marcus & Genrup, Magnus, 2017. "Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel," Applied Energy, Elsevier, vol. 185(P2), pages 1324-1335.
    7. Joon-Young Park & Jae-Weon Jeong, 2017. "Operating Energy Savings of a Liquid Desiccant and Evaporative Cooling-Assisted Air-Handling System in Marine Applications," Energies, MDPI, vol. 10(4), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    2. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    3. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    4. Xu, Heng & Gao, Naiping & Zhu, Tong, 2016. "Investigation on the fluid selection and evaporation parametric optimization for sub- and supercritical organic Rankine cycle," Energy, Elsevier, vol. 96(C), pages 59-68.
    5. Cataldo, Filippo & Mastrullo, Rita & Mauro, Alfonso William & Vanoli, Giuseppe Peter, 2014. "Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization," Energy, Elsevier, vol. 72(C), pages 159-167.
    6. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    7. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    8. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    9. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    10. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.
    11. Kolahchian Tabrizi, Mehrshad & Bonalumi, Davide, 2022. "Techno-economic performance of the 2-propanol/1-butanol zeotropic mixture and 2-propanol/water azeotropic mixture as a working fluid in Organic Rankine Cycles," Energy, Elsevier, vol. 246(C).
    12. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    13. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    14. Di Maria, Francesco & Micale, Caterina, 2015. "The contribution to energy production of the aerobic bioconversion of organic waste by an organic Rankine cycle in an integrated anaerobic–aerobic facility," Renewable Energy, Elsevier, vol. 81(C), pages 770-778.
    15. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    16. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    17. Yu, Haoshui & Feng, Xiao & Wang, Yufei, 2015. "A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat," Energy, Elsevier, vol. 90(P1), pages 36-46.
    18. Lira-Barragán, Luis Fernando & Ponce-Ortega, José María & Serna-González, Medardo & El-Halwagi, Mahmoud M., 2014. "Optimal design of process energy systems integrating sustainable considerations," Energy, Elsevier, vol. 76(C), pages 139-160.
    19. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    20. Zhao, Li & Bao, Junjiang, 2014. "Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures," Applied Energy, Elsevier, vol. 130(C), pages 748-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:503-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.