IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v48y2012i1p292-297.html
   My bibliography  Save this article

Analysis of transient energy affection for wind farm under lightning

Author

Listed:
  • Jiang, Jheng-Lun
  • Chang, Hong-Chan
  • Kuo, Cheng-Chien

Abstract

This study investigated the transient energy affection by grid-connected wind farm under lightning. Modeling of the energy system with grid-connected wind farm for Electro Magnetic Transients Program (EMTP) was established efficiently to simulate the transient phenomenon of energy distribution during lightning. The transient phenomena caused by lightning strikes on wind turbines connected to a power system were simulated through three different cases. From the simulation and analysis results, a number of informative suggestions and strategies can be provided to minimize or prevent the possible affection of wind farms and the connected power system during lightning.

Suggested Citation

  • Jiang, Jheng-Lun & Chang, Hong-Chan & Kuo, Cheng-Chien, 2012. "Analysis of transient energy affection for wind farm under lightning," Energy, Elsevier, vol. 48(1), pages 292-297.
  • Handle: RePEc:eee:energy:v:48:y:2012:i:1:p:292-297
    DOI: 10.1016/j.energy.2012.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    2. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2010. "Evaluation of wind power planning in Denmark – Towards an integrated perspective," Energy, Elsevier, vol. 35(12), pages 5443-5454.
    3. Xu, Jianzhong & He, Dexin & Zhao, Xiaolu, 2010. "Status and prospects of Chinese wind energy," Energy, Elsevier, vol. 35(11), pages 4439-4444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petar Sarajcev & Antun Meglic & Ranko Goic, 2021. "Lightning Overvoltage Protection of Step-Up Transformer Inside a Nacelle of Onshore New-Generation Wind Turbines," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    2. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    3. Chen, Diyi & Liu, Si & Ma, Xiaoyi, 2013. "Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control," Energy, Elsevier, vol. 53(C), pages 139-146.
    4. Novosel, T. & Ćosić, B. & Pukšec, T. & Krajačić, G. & Duić, N. & Mathiesen, B.V. & Lund, H. & Mustafa, M., 2015. "Integration of renewables and reverse osmosis desalination – Case study for the Jordanian energy system with a high share of wind and photovoltaics," Energy, Elsevier, vol. 92(P3), pages 270-278.
    5. Zhao, Zhen-yu & Yan, Hong & Zuo, Jian & Tian, Yu-xi & Zillante, George, 2013. "A critical review of factors affecting the wind power generation industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 499-508.
    6. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2012. "Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects," Energy, Elsevier, vol. 37(1), pages 455-468.
    7. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    8. Lam, J.C.K. & Woo, C.K. & Kahrl, F. & Yu, W.K., 2013. "What moves wind energy development in China? Show me the money!," Applied Energy, Elsevier, vol. 105(C), pages 423-429.
    9. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
    10. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    12. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    13. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    14. Johansen, Katinka, 2021. "Blowing in the wind: A brief history of wind energy and wind power technologies in Denmark," Energy Policy, Elsevier, vol. 152(C).
    15. Davidson, Michael & Gunturu, Bhaskar & Zhang, Da & Zhang, Xiliang & Karplus, Valerie, 2013. "An Integrated Assessment of China’s Wind Energy Potential," Conference papers 332410, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Haas, Reinhard & Duic, Neven & Auer, Hans & Ajanovic, Amela & Ramsebner, Jasmine & Knapek, Jaroslav & Zwickl-Bernhard, Sebastian, 2023. "The photovoltaic revolution is on: How it will change the electricity system in a lasting way," Energy, Elsevier, vol. 265(C).
    17. Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Yang, Hua, 2017. "Verification of a novel innovative blade root design for wind turbines using a hybrid numerical method," Energy, Elsevier, vol. 141(C), pages 1661-1670.
    18. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    19. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    20. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Eghbal, Mehdi, 2014. "Investigating the priority of market participants for low emission generation entry into the Australian grid," Energy, Elsevier, vol. 71(C), pages 445-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:48:y:2012:i:1:p:292-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.