IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p183-194.html
   My bibliography  Save this article

An evaluation of Substitute natural gas production from different coal gasification processes based on modeling

Author

Listed:
  • Karellas, S.
  • Panopoulos, K.D.
  • Panousis, G.
  • Rigas, A.
  • Karl, J.
  • Kakaras, E.

Abstract

Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared.

Suggested Citation

  • Karellas, S. & Panopoulos, K.D. & Panousis, G. & Rigas, A. & Karl, J. & Kakaras, E., 2012. "An evaluation of Substitute natural gas production from different coal gasification processes based on modeling," Energy, Elsevier, vol. 45(1), pages 183-194.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:183-194
    DOI: 10.1016/j.energy.2012.03.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212002782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.03.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karellas, S. & Karl, J. & Kakaras, E., 2008. "An innovative biomass gasification process and its coupling with microturbine and fuel cell systems," Energy, Elsevier, vol. 33(2), pages 284-291.
    2. Valero, Antonio & Usón, Sergio, 2006. "Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant," Energy, Elsevier, vol. 31(10), pages 1643-1655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Sheng & Ji, Xiaozhou & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2014. "Coal to SNG: Technical progress, modeling and system optimization through exergy analysis," Applied Energy, Elsevier, vol. 136(C), pages 98-109.
    2. Biresselioglu, Mehmet Efe & Yelkenci, Tezer, 2016. "Scrutinizing the causality relationships between prices, production and consumption of fossil fuels: A panel data approach," Energy, Elsevier, vol. 102(C), pages 44-53.
    3. Timo Blumberg & Max Sorgenfrei & George Tsatsaronis, 2015. "Design and Assessment of an IGCC Concept with CO 2 Capture for the Co-Generation of Electricity and Substitute Natural Gas," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    4. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    5. Obara, Shin'ya & Morel, Jorge & Okada, Masaki & Kobayashi, Kazuma, 2016. "Performance evaluation of an independent microgrid comprising an integrated coal gasification fuel cell combined cycle, large-scale photovoltaics, and a pumped-storage power station," Energy, Elsevier, vol. 116(P1), pages 78-93.
    6. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    7. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    8. Schuelke-Leech, Beth-Anne & Barry, Betsy & Muratori, Matteo & Yurkovich, B.J., 2015. "Big Data issues and opportunities for electric utilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 937-947.
    9. Adela Bâra & Simona-Vasilica Oprea & Niculae Oprea, 2023. "How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    10. Yevheniia Ziabina & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko & Yana Us, 2023. "Convergence of Energy Policies between the EU and Ukraine under the Green Deal Policy," Energies, MDPI, vol. 16(2), pages 1-19, January.
    11. Li, Sheng & Jin, Hongguang & Gao, Lin, 2013. "Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas," Energy, Elsevier, vol. 55(C), pages 658-667.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    2. Smoliński, A. & Howaniec, N. & Stańczyk, K., 2011. "A comparative experimental study of biomass, lignite and hard coal steam gasification," Renewable Energy, Elsevier, vol. 36(6), pages 1836-1842.
    3. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    4. Gassner, Martin & Maréchal, François, 2009. "Thermodynamic comparison of the FICFB and Viking gasification concepts," Energy, Elsevier, vol. 34(10), pages 1744-1753.
    5. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    6. Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
    7. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    8. Marcin Siedlecki & Wiebren De Jong & Adrian H.M. Verkooijen, 2011. "Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review," Energies, MDPI, vol. 4(3), pages 1-46, March.
    9. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    10. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    11. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    12. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    13. Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
    14. Kalina, Jacek, 2016. "Complex thermal energy conversion systems for efficient use of locally available biomass," Energy, Elsevier, vol. 110(C), pages 105-115.
    15. Thallam Thattai, A. & Oldenbroek, V. & Schoenmakers, L. & Woudstra, T. & Aravind, P.V., 2016. "Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253MWe integrated gasification combined cycle power plant in Buggenum, The Neth," Applied Energy, Elsevier, vol. 168(C), pages 381-393.
    16. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    17. Bang-Møller, C. & Rokni, M. & Elmegaard, B., 2011. "Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system," Energy, Elsevier, vol. 36(8), pages 4740-4752.
    18. Karamarkovic, Rade & Karamarkovic, Vladan, 2010. "Energy and exergy analysis of biomass gasification at different temperatures," Energy, Elsevier, vol. 35(2), pages 537-549.
    19. Szega, Marcin & Nowak, Grzegorz Tadeusz, 2015. "An optimization of redundant measurements location for thermal capacity of power unit steam boiler calculations using data reconciliation method," Energy, Elsevier, vol. 92(P1), pages 135-141.
    20. Marcus Evandro Teixeira Souza Junior & Luiz Carlos Gomes Freitas, 2022. "Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review," Sustainability, MDPI, vol. 14(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:183-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.