IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220316509.html
   My bibliography  Save this article

A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals

Author

Listed:
  • Huang, Haiping
  • Wang, Eric

Abstract

Coal biogasification via microbial metabolization has great potential to produce renewable methane and facilitate carbon dioxide sequestration while multiple challenges still remain to tackle especially the deficiency of direct permeability measurements. The pulse decay method has been performed on high-volatile bituminous coals from Western Canada to investigate permeability variations for raw, solvent soaked and solvent-extracted samples under variable confining and pore pressures. Coal permeability decreases with respect to increasing confining pressure while it increases tens of times with respect to increasing pore pressure. The vertical permeability is about one order of magnitude lower than horizontal one, indicating highly anisotropic nature of coal. Coal bioconversion stimulation by adding solvent may trigger a series of coal–solvent interactions due to matrix swelling. Coal permeability drops about one order of magnitude after soaked in toluene and dichloromethane but less dramatic in hexane. However, solvent-extraction and sorptive material removal can reduce the swelling strain and increase permeability about two orders of magnitude. Coal matrix swelling and shrinkage in solvent, coupled with the effects of external effective stress, make coal permeability relationships complicated and a deeper understanding of these processes is needed for coal bioconversion application in fields.

Suggested Citation

  • Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316509
    DOI: 10.1016/j.energy.2020.118542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220316509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jasinge, D. & Ranjith, P.G. & Choi, Xavier & Fernando, J., 2012. "Investigation of the influence of coal swelling on permeability characteristics using natural brown coal and reconstituted brown coal specimens," Energy, Elsevier, vol. 39(1), pages 303-309.
    2. Zhang, Ji & Liang, Yanna & Harpalani, Satya, 2016. "Optimization of methane production from bituminous coal through biogasification," Applied Energy, Elsevier, vol. 183(C), pages 31-42.
    3. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    4. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    5. Liu, Ting & Lin, Baiquan & Fu, Xuehai & Gao, Yabin & Kong, Jia & Zhao, Yang & Song, Haoran, 2020. "Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam," Energy, Elsevier, vol. 195(C).
    6. Niu, Qinghe & Cao, Liwen & Sang, Shuxun & Zhou, Xiaozhi & Wang, Zhenzhi & Wu, Zhiyong, 2017. "The adsorption-swelling and permeability characteristics of natural and reconstituted anthracite coals," Energy, Elsevier, vol. 141(C), pages 2206-2217.
    7. Karellas, S. & Panopoulos, K.D. & Panousis, G. & Rigas, A. & Karl, J. & Kakaras, E., 2012. "An evaluation of Substitute natural gas production from different coal gasification processes based on modeling," Energy, Elsevier, vol. 45(1), pages 183-194.
    8. Zhou, Yinbo & Zhang, Ruilin & Huang, Jilei & Li, Zenghua & Chen, Zhao & Zhao, Zhou & Hong, Yidu, 2020. "Influence of alkaline solution injection for wettability and permeability of coal with CO2 injection," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    2. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    3. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
    4. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    5. Niu, Qinghe & Wang, Qizhi & Wang, Wei & Chang, Jiangfang & Chen, Mingyi & Wang, Haichao & Cai, Nian & Fan, Li, 2022. "Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction," Energy, Elsevier, vol. 238(PB).
    6. Wang, Zhenzhi & Fu, Xuehai & Pan, Jienan & Deng, Ze, 2023. "Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal," Energy, Elsevier, vol. 275(C).
    7. Psaltis, Steven & Farrell, Troy & Burrage, Kevin & Burrage, Pamela & McCabe, Peter & Moroney, Timothy & Turner, Ian & Mazumder, Saikat, 2015. "Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development," Energy, Elsevier, vol. 88(C), pages 621-635.
    8. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    9. Zhouhua Wang & Yun Li & Huang Liu & Fanhua Zeng & Ping Guo & Wei Jiang, 2017. "Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics," Energies, MDPI, vol. 10(1), pages 1-15, January.
    10. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    11. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    12. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    13. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    14. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    15. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    16. Li, Zhongbei & Ren, Ting & Li, Xiangchun & Cheng, Yuanping & He, Xueqiu & Lin, Jia & Qiao, Ming & Yang, Xiaohan, 2023. "Full-scale pore structure characterization of different rank coals and its impact on gas adsorption capacity: A theoretical model and experimental study," Energy, Elsevier, vol. 277(C).
    17. Xu, Chao & Wang, Wenjing & Wang, Kai & Zhou, Aitao & Guo, Lin & Yang, Tong, 2023. "Filling–adsorption mechanism and diffusive transport characteristics of N2/CO2 in coal: Experiment and molecular simulation," Energy, Elsevier, vol. 282(C).
    18. Li, Sheng & Jin, Hongguang & Gao, Lin, 2013. "Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas," Energy, Elsevier, vol. 55(C), pages 658-667.
    19. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    20. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.