IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220301122.html
   My bibliography  Save this article

Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam

Author

Listed:
  • Liu, Ting
  • Lin, Baiquan
  • Fu, Xuehai
  • Gao, Yabin
  • Kong, Jia
  • Zhao, Yang
  • Song, Haoran

Abstract

In-situ coal seam is generally under the stress constraint condition. However, the powder coal is often adopted to study gas diffusion dynamics in the laboratory, in this case, the stress cannot be imposed on the coal sample. So the question is, can the laboratory test results with the powder coal reflect the gas diffusion behaviors in the in-situ coal seam? Does the confining stress affect the gas diffusion behaviors in fractured coal? To address these questions, in this work, we first investigated the effect of coal size on gas diffusion dynamics with powder coal and lump coal under unconstrained conditions. The results show that there exists an obvious scale effect for gas diffusion in coal, and a critical value of coal size has been found for the scale effect. When the coal particle size is smaller than the critical value, the effective diffusivity decreases with an increase of the particle size; and when the particle size is larger than the critical value, no obvious change can be found in the effective diffusivity. The critical value for gas diffusion corresponds to the size of the coal matrix. The essential reason for the existence of the scale effect is the differences among the pore structures of coals with various sizes. Based on the research results under the unconstrained conditions, a coal core was selected to study the effect of confining stress and pore pressure on gas diffusion under constraint condition. The results indicated that the confining stress and pore pressure have significant impact on gas diffusion in fractured coal. With an increase of the confining stress and a decrease of the pore pressure, the effective diffusivity reduces gradually. Therefore, to get an accurate understanding of the gas diffusion behavior in in-situ coal seam, during the test in the lab, both the scale effect and confining stress should be considered. The research results obtained in this work have important guiding significance to reveal gas migration in in-situ coal seams during CBM depletion, CO2-ECBM and geological sequestration of CO2.

Suggested Citation

  • Liu, Ting & Lin, Baiquan & Fu, Xuehai & Gao, Yabin & Kong, Jia & Zhao, Yang & Song, Haoran, 2020. "Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301122
    DOI: 10.1016/j.energy.2020.117005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Psaltis, Steven & Farrell, Troy & Burrage, Kevin & Burrage, Pamela & McCabe, Peter & Moroney, Timothy & Turner, Ian & Mazumder, Saikat, 2015. "Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development," Energy, Elsevier, vol. 88(C), pages 621-635.
    2. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    2. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    3. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    4. Bai, Gang & Su, Jun & Li, Xueming & Guo, Chunsheng & Han, Mingxu & Zhou, Xihua & Fan, Chaojun, 2022. "Step-by-step CO2 injection pressure for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 260(C).
    5. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "A micro-macro coupled permeability model for gas transport in coalbed methane reservoirs," Energy, Elsevier, vol. 284(C).
    6. Zhou, H.W. & Liu, Z.L. & Zhong, J.C. & Chen, B.C. & Zhao, J.W. & Xue, D.J., 2022. "NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach," Energy, Elsevier, vol. 261(PA).
    7. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    8. Cheng, Ming & Fu, Xuehai & Chen, Zhaoying & Liu, Ting & Zhang, Miao & Kang, Junqiang, 2023. "A new approach to evaluate abandoned mine methane resources based on the zoning of the mining-disturbed strata," Energy, Elsevier, vol. 274(C).
    9. Jie Zheng & Qinming Liang & Xin Zhang & Jinyong Huang & Wei Yan & Gun Huang & Honglin Liu, 2023. "On Gas Desorption-Diffusion Regularity of Bituminous Coal with Different Particle Sizes and Its Influence on Outburst-Coal Breaking," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    10. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    11. Du, Xuanhong & Xue, Junhua & Shi, Yu & Cao, Chen-Rui & Shu, Chi-Min & Li, Kehan & Ma, Qian & Zhan, Keliang & Chen, Zhiheng & Wang, Shulou, 2023. "Triaxial mechanical behaviour and energy conversion characteristics of deep coal bodies under confining pressure," Energy, Elsevier, vol. 266(C).
    12. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Mechanical degradation model of porous coal with water intrusion," Energy, Elsevier, vol. 278(C).
    13. Li, Zhongbei & Ren, Ting & Li, Xiangchun & Cheng, Yuanping & He, Xueqiu & Lin, Jia & Qiao, Ming & Yang, Xiaohan, 2023. "Full-scale pore structure characterization of different rank coals and its impact on gas adsorption capacity: A theoretical model and experimental study," Energy, Elsevier, vol. 277(C).
    14. Zhang, Xiangliang & Jian, Shen & Lin, Baiquan & Zhu, Chuanjie, 2023. "Study on the influence of different-voltage plasma breakdowns on functional group structures in coal," Energy, Elsevier, vol. 284(C).
    15. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    16. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Coal rank-pressure coupling control mechanism on gas adsorption/desorption in coalbed methane reservoirs," Energy, Elsevier, vol. 270(C).
    17. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    18. Zhong, Shan & Yue, Hairong & Baitalow, Felix & Reinmöller, Markus & Meyer, Bernd, 2021. "In-situ investigation of coal particle fragmentation induced by thermal stress and numerical analysis of the main influencing factors," Energy, Elsevier, vol. 215(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    2. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    3. Ziwen Li & Hongjin Yu & Yansong Bai, 2022. "Numerical Simulation of CO 2 -ECBM Based on Multi-Physical Field Coupling Model," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    4. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    5. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    6. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    7. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    8. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    9. Cheng, Ming & Fu, Xuehai & Chen, Zhaoying & Liu, Ting & Zhang, Miao & Kang, Junqiang, 2023. "A new approach to evaluate abandoned mine methane resources based on the zoning of the mining-disturbed strata," Energy, Elsevier, vol. 274(C).
    10. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    11. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    12. Liu, Xudong & Sang, Shuxun & Zhou, Xiaozhi & Wang, Ziliang, 2023. "Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM," Energy, Elsevier, vol. 262(PA).
    13. Fan, Zhanglei & Fan, Gangwei & Zhang, Dongsheng & Zhang, Lei & Zhang, Shuai & Liang, Shuaishuai & Yu, Wei, 2021. "Optimal injection timing and gas mixture proportion for enhancing coalbed methane recovery," Energy, Elsevier, vol. 222(C).
    14. Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
    15. Liang Cheng & Zhaolong Ge & Jiufu Chen & Hao Ding & Lishuang Zou & Ke Li, 2018. "A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions," Energies, MDPI, vol. 11(11), pages 1-16, November.
    16. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    17. Lu, Yanjun & Han, Jinxuan & Yang, Manping & Chen, Xingyu & Zhu, Hongjian & Yang, Zhaozhong, 2023. "Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM," Energy, Elsevier, vol. 266(C).
    18. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang & Yang, Lei & Wang, Yiqi, 2023. "Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions," Energy, Elsevier, vol. 268(C).
    19. Geng, Weile & Huang, Gun & Guo, Shengli & Jiang, Changbao & Dong, Ziwen & Wang, Wensong, 2022. "Influence of long-term CH4 and CO2 treatment on the pore structure and mechanical strength characteristics of Baijiao coal," Energy, Elsevier, vol. 242(C).
    20. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.