IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p257-277.html
   My bibliography  Save this article

Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system

Author

Listed:
  • Papadias, Dionissios D.
  • Ahmed, Shabbir
  • Kumar, Romesh

Abstract

This paper reviews the information available on the impurities encountered in stationary fuel cell systems, their effects on the fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. A generic model of a molten carbonate fuel cell-based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

Suggested Citation

  • Papadias, Dionissios D. & Ahmed, Shabbir & Kumar, Romesh, 2012. "Fuel quality issues with biogas energy – An economic analysis for a stationary fuel cell system," Energy, Elsevier, vol. 44(1), pages 257-277.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:257-277
    DOI: 10.1016/j.energy.2012.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rasi, S. & Veijanen, A. & Rintala, J., 2007. "Trace compounds of biogas from different biogas production plants," Energy, Elsevier, vol. 32(8), pages 1375-1380.
    2. Spiegel, R.J & Preston, J.L, 2003. "Technical assessment of fuel cell operation on landfill gas at the Groton, CT, landfill," Energy, Elsevier, vol. 28(5), pages 397-409.
    3. Nicolin, Flavio & Verda, Vittorio, 2011. "Lifetime optimization of a molten carbonate fuel cell power system coupled with hydrogen production," Energy, Elsevier, vol. 36(4), pages 2235-2241.
    4. Osorio, F. & Torres, J.C., 2009. "Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production," Renewable Energy, Elsevier, vol. 34(10), pages 2164-2171.
    5. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    6. Appleby, A.J., 1996. "Fuel cell technology: Status and future prospects," Energy, Elsevier, vol. 21(7), pages 521-653.
    7. Montanari, Tania & Finocchio, Elisabetta & Salvatore, Enrico & Garuti, Gilberto & Giordano, Andrea & Pistarino, Chiara & Busca, Guido, 2011. "CO2 separation and landfill biogas upgrading: A comparison of 4A and 13X zeolite adsorbents," Energy, Elsevier, vol. 36(1), pages 314-319.
    8. Spiegel, R.J & Preston, J.L & Trocciola, J.C, 1999. "Fuel cell operation on landfill gas at Penrose Power Station," Energy, Elsevier, vol. 24(8), pages 723-742.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    2. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    4. Vita, A. & Italiano, C. & Previtali, D. & Fabiano, C. & Palella, A. & Freni, F. & Bozzano, G. & Pino, L. & Manenti, F., 2018. "Methanol synthesis from biogas: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 118(C), pages 673-684.
    5. Gong, Huijuan & Zhou, Shuyu & Chen, Zezhi & Chen, Lu, 2019. "Effect of volatile organic compounds on carbon dioxide adsorption performance via pressure swing adsorption for landfill gas upgrading," Renewable Energy, Elsevier, vol. 135(C), pages 811-818.
    6. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    7. Kim, Young Jun & Nam, Young Suk & Kang, Yong Tae, 2015. "Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas," Energy, Elsevier, vol. 91(C), pages 732-741.
    8. Tiwari, Prince & Wang, Tiantian & Indlekofer, Julian & El Haddad, Imad & Biollaz, Serge & Prevot, Andre Stephan Henry & Lamkaddam, Houssni, 2022. "Online detection of trace volatile organic sulfur compounds in a complex biogas mixture with proton-transfer-reaction mass spectrometry," Renewable Energy, Elsevier, vol. 196(C), pages 1197-1203.
    9. Parente, Marcelo & Soria, M.A. & Madeira, Luis M., 2020. "Hydrogen and/or syngas production through combined dry and steam reforming of biogas in a membrane reactor: A thermodynamic study," Renewable Energy, Elsevier, vol. 157(C), pages 1254-1264.
    10. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    12. Carolinne Secco & Maria Eduarda Kounaris Fuziki & Angelo Marcelo Tusset & Giane Gonçalves Lenzi, 2023. "Reactive Processes for H 2 S Removal," Energies, MDPI, vol. 16(4), pages 1-14, February.
    13. Papurello, Davide & Lanzini, Andrea & Drago, Davide & Leone, Pierluigi & Santarelli, Massimo, 2016. "Limiting factors for planar solid oxide fuel cells under different trace compound concentrations," Energy, Elsevier, vol. 95(C), pages 67-78.
    14. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    15. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    16. Spiegel, R.J & Preston, J.L, 2003. "Technical assessment of fuel cell operation on landfill gas at the Groton, CT, landfill," Energy, Elsevier, vol. 28(5), pages 397-409.
    17. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    18. Yankun Sun & Wanzhen Liu & Xinzhong Wang & Haiyan Yang & Jun Liu, 2020. "Enhanced Adsorption of Carbon Dioxide from Simulated Biogas on PEI/MEA-Functionalized Silica," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    19. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    20. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:257-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.