IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v42y2012i1p350-357.html
   My bibliography  Save this article

An experimental study of heat transfer and pollutant emission characteristics at varying distances between the burner and the heat exchanger in a compact combustion system

Author

Listed:
  • Yu, Byeonghun
  • Kum, Sung-Min
  • Lee, Chang-Eon
  • Lee, Seungro

Abstract

The effect of the distance between the burner and the heat exchanger on the heat transfer characteristics and NOx and CO emission characteristics in a compact combustion system was studied. The premixed burner was installed in front of a heat exchanger, and the distance between the burner and the heat exchanger was varied from 30 mm to 50 mm to experimentally investigate the effect of distance for the counter flow and the parallel flow conditions. Distances in the type A, type B and type C heat exchangers were 30 mm, 40 mm and 50 mm, respectively. The results showed that NOx concentration increased at the same equivalence ratio for both flow conditions as the distance between the burner and the heat exchanger increased. On the other hand, CO emission increased for both flow conditions due to the quenching effect as the distance between the burner and the heat exchanger decreased. In the experimental range, the optimal equivalence ratio of heat exchanger type A was 0.75 to minimize pollutant emission. At this condition, the NOx and CO emissions were 32.3 ppm and 85.6 ppm, respectively, and the effectiveness was 0.797.

Suggested Citation

  • Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2012. "An experimental study of heat transfer and pollutant emission characteristics at varying distances between the burner and the heat exchanger in a compact combustion system," Energy, Elsevier, vol. 42(1), pages 350-357.
  • Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:350-357
    DOI: 10.1016/j.energy.2012.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212002460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "Performances of a heat exchanger and pilot boiler for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 3945-3951.
    2. Macor, A. & Pavanello, P., 2009. "Performance and emissions of biodiesel in a boiler for residential heating," Energy, Elsevier, vol. 34(12), pages 2025-2032.
    3. Schaffel-Mancini, Natalia & Mancini, Marco & Szlek, Andrzej & Weber, Roman, 2010. "Novel conceptual design of a supercritical pulverized coal boiler utilizing high temperature air combustion (HTAC) technology," Energy, Elsevier, vol. 35(7), pages 2752-2760.
    4. Maruyama, S. & Aoki, T. & Igarashi, K. & Sakai, S., 2005. "Development of a high efficiency radiation converter using a spiral heat exchanger," Energy, Elsevier, vol. 30(2), pages 359-371.
    5. Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "An experimental study of a cylindrical multi-hole premixed burner for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 4150-4157.
    6. Lee, Jaepark & Kim, Jong-Min & Lee, Seungro & Lee, Chang-Eon, 2011. "A study on the effects of CO-tubes insertion on the emission characteristics of a compact heat exchanger," Energy, Elsevier, vol. 36(3), pages 1652-1658.
    7. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De la Cruz-Ávila, M. & Martínez-Espinosa, E. & Polupan, Georgiy & Vicente, W., 2017. "Numerical study of the effect of jet velocity on methane-oxygen confined inverse diffusion flame in a 4 Lug-Bolt array," Energy, Elsevier, vol. 141(C), pages 1629-1649.
    2. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "An experimental study of a cylindrical multi-hole premixed burner for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 4150-4157.
    2. Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "Performances of a heat exchanger and pilot boiler for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 3945-3951.
    3. Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
    4. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.
    5. Saberi Moghaddam, Mohammad Hossein & Saei Moghaddam, Mojtaba & Khorramdel, Mohammad, 2017. "Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner," Energy, Elsevier, vol. 125(C), pages 654-662.
    6. Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
    7. Soltanian, Hossein & Targhi, Mohammad Zabetian & Pasdarshahri, Hadi, 2019. "Chemiluminescence usage in finding optimum operating range of multi-hole burners," Energy, Elsevier, vol. 180(C), pages 398-404.
    8. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
    9. Ahmadi, Ziaulhaq & Zabetian Targhi, Mohammad, 2021. "Thermal performance investigation of a premixed surface flame burner used in the domestic heating boilers," Energy, Elsevier, vol. 236(C).
    10. Mi, Jianchun & Li, Pengfei & Zheng, Chuguang, 2011. "Impact of injection conditions on flame characteristics from a parallel multi-jet burner," Energy, Elsevier, vol. 36(11), pages 6583-6595.
    11. Bazooyar, Bahamin & Hosseini, Seyyed Yaghoob & Moradi Ghoje Begloo, Solat & Shariati, Ahmad & Hashemabadi, Seyed Hassan & Shaahmadi, Fariborz, 2018. "Mixed modified Fe2O3-WO3 as new fuel borne catalyst (FBC) for biodiesel fuel," Energy, Elsevier, vol. 149(C), pages 438-453.
    12. Tu, Yaojie & Xu, Shunta & Xu, Mingchen & Liu, Hao & Yang, Wenming, 2020. "Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm," Energy, Elsevier, vol. 197(C).
    13. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    14. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    15. Tan, Kok Tat & Lee, Keat Teong, 2011. "A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2452-2456, June.
    16. Szewczyk, Dariusz & Ślefarski, Rafał & Jankowski, Radosław, 2017. "Analysis of the combustion process of syngas fuels containing high hydrocarbons and nitrogen compounds in Zonal Volumetric Combustion technology," Energy, Elsevier, vol. 121(C), pages 716-725.
    17. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    18. Lee, Chang-Eon & Yu, Byeonghun & Lee, Seungro, 2015. "An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)," Energy, Elsevier, vol. 86(C), pages 267-275.
    19. Julio San José & Yolanda Arroyo & María Ascensión Sanz-Tejedor, 2019. "Descriptive Statistical Analysis of Vegetable Oil Combustion in a Commercial Burner to Establish Optimal Operating Conditions," Energies, MDPI, vol. 12(12), pages 1-11, June.
    20. Rolandas Paulauskas & Indrek Jõgi & Nerijus Striūgas & Dainius Martuzevičius & Kalev Erme & Jüri Raud & Martynas Tichonovas, 2019. "Application of Non-Thermal Plasma for NOx Reduction in the Flue Gases," Energies, MDPI, vol. 12(20), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:350-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.