IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v40y2012i1p300-306.html
   My bibliography  Save this article

NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere

Author

Listed:
  • Tang, Yuting
  • Ma, Xiaoqian
  • Lai, Zhiyi
  • Zhou, Daoxi
  • Lin, Hai
  • Chen, Yong

Abstract

The NOx and SO2 emissions from MSW combustion in CO2/O2 atmosphere were studied using a lab-scale electrically heated tube furnace. The shape, peaks location, and peaks values of NOx concentration curves all changed with temperature. In comparison, regarding these three characteristics of SO2 concentration curves, only peaks values were affected by temperature. The shape and peaks location of NOx and SO2 concentration curves changed with atmosphere indistinctively, but their peaks values, maximal average emissions, and the corresponding temperature were affected by atmosphere. Replacement of N2 by CO2 reduced NOx emission when the temperature was higher than or equal to 800 °C, but reduced SO2 emission when the temperature was lower than 1000 °C. At 1000 °C, some improvement measures, such as adding appropriate sorbents, were required in 80CO2/20O2 to achieve removal characteristics of SO2 and NOx simultaneously. The maximal desulphurization efficiency of CaO in 80CO2/20O2 atmosphere (34.4% at 800 °C) or limestone in 80N2/20O2 atmosphere (23.4% at 900 °C) was lower than that of limestone in 80CO2/20O2 atmosphere (43.3% at 1000 °C), indicating that direct sulfation in 80CO2/20O2 atmosphere was favourable for high desulphurization degree and consequently enabled better sorbent utilization. Besides, to obtain higher desulphurization efficiency at high temperature, Ca/S ratio should be increased.

Suggested Citation

  • Tang, Yuting & Ma, Xiaoqian & Lai, Zhiyi & Zhou, Daoxi & Lin, Hai & Chen, Yong, 2012. "NOx and SO2 emissions from municipal solid waste (MSW) combustion in CO2/O2 atmosphere," Energy, Elsevier, vol. 40(1), pages 300-306.
  • Handle: RePEc:eee:energy:v:40:y:2012:i:1:p:300-306
    DOI: 10.1016/j.energy.2012.01.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212000850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.01.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zsigraiová, Zdena & Tavares, Gilberto & Semiao, Viriato & Carvalho, Maria de Graça, 2009. "Integrated waste-to-energy conversion and waste transportation within island communities," Energy, Elsevier, vol. 34(5), pages 623-635.
    2. Irfan, Muhammad Faisal & Arami-Niya, Arash & Chakrabarti, Mohammed Harun & Wan Daud, Wan Mohd. Ashri & Usman, Muhammad Rashid, 2012. "Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres," Energy, Elsevier, vol. 37(1), pages 665-672.
    3. Zhang, Na & Lior, Noam, 2008. "Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture," Energy, Elsevier, vol. 33(2), pages 340-351.
    4. Pak, Pyong Sik & Lee, Young Duk & Ahn, Kook Young, 2009. "Characteristics and economic evaluation of a CO2-capturing repowering system with oxy-fuel combustion for utilizing exhaust gas of molten carbonate fuel cell (MCFC)," Energy, Elsevier, vol. 34(11), pages 1903-1909.
    5. Hong, Jongsup & Chaudhry, Gunaranjan & Brisson, J.G. & Field, Randall & Gazzino, Marco & Ghoniem, Ahmed F., 2009. "Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor," Energy, Elsevier, vol. 34(9), pages 1332-1340.
    6. Liszka, M. & Ziębik, A., 2010. "Coal-fired oxy-fuel power unit – Process and system analysis," Energy, Elsevier, vol. 35(2), pages 943-951.
    7. Zhou, Hao & Cen, Kefa & Fan, Jianren, 2004. "Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks," Energy, Elsevier, vol. 29(1), pages 167-183.
    8. Pak, Pyong Sik & Lee, Young Duk & Ahn, Kook Young, 2010. "Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission," Energy, Elsevier, vol. 35(8), pages 3230-3238.
    9. Lai, ZhiYi & Ma, XiaoQian & Tang, YuTing & Lin, Hai, 2011. "A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA," Energy, Elsevier, vol. 36(2), pages 819-824.
    10. Okazaki, K. & Ando, T., 1997. "NOx reduction mechanism in coal combustion with recycled CO2," Energy, Elsevier, vol. 22(2), pages 207-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birgen, Cansu & Magnanelli, Elisa & Carlsson, Per & Becidan, Michaël, 2021. "Operational guidelines for emissions control using cross-correlation analysis of waste-to-energy process data," Energy, Elsevier, vol. 220(C).
    2. Lasek, Janusz A. & Janusz, Marcin & Zuwała, Jarosław & Głód, Krzysztof & Iluk, Andrzej, 2013. "Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures," Energy, Elsevier, vol. 62(C), pages 105-112.
    3. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Chen, Yong, 2013. "Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China," Energy Policy, Elsevier, vol. 60(C), pages 132-141.
    4. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    5. Vilardi, Giorgio & Verdone, Nicola, 2022. "Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process," Energy, Elsevier, vol. 239(PB).
    6. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    7. Wienchol, Paulina & Korus, Agnieszka & Szlęk, Andrzej & Ditaranto, Mario, 2022. "Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions," Energy, Elsevier, vol. 248(C).
    8. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    9. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Lv, You & Liu, Jizhen & Yang, Tingting & Zeng, Deliang, 2013. "A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 319-329.
    11. Michaël Becidan & Mario Ditaranto & Per Carlsson & Jørn Bakken & Maria N. P. Olsen & Johnny Stuen, 2021. "Oxyfuel Combustion of a Model MSW—An Experimental Study," Energies, MDPI, vol. 14(17), pages 1-14, August.
    12. Kalisz, Sylwester & Wejkowski, Robert & Maj, Izabella & Garbacz, Przemysław, 2023. "A novel approach to the dry desulfurization process by means of sodium bicarbonate: A full-scale study on SO2 emission and geochemistry of fly ash," Energy, Elsevier, vol. 279(C).
    13. Zacharczuk, Wojciech & Andruszkiewicz, Artur & Tatarek, Andrzej & Alahmer, Ali & Alsaqoor, Sameh, 2021. "Effect of Ca-based additives on the capture of SO2 during combustion of pulverized lignite," Energy, Elsevier, vol. 231(C).
    14. Wei, Yunmei & Li, Jingyuan & Shi, Dezhi & Liu, Guotao & Zhao, Youcai & Shimaoka, Takayuki, 2017. "Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 51-65.
    15. Rezaei, Mahdi & Ghobadian, Barat & Samadi, Seyed Hashem & Karimi, Samira, 2018. "Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran," Energy, Elsevier, vol. 152(C), pages 46-56.
    16. Wang, Yuelan & Ma, Zengyi & Shen, Yueliang & Tang, Yijun & Ni, Mingjiang & Chi, Yong & Yan, Jianhua & Cen, Kefa, 2016. "A power-saving control strategy for reducing the total pressure applied by the primary air fan of a coal-fired power plant," Applied Energy, Elsevier, vol. 175(C), pages 380-388.
    17. von Bohnstein, Maximilian & Richter, Marcel & Graeser, Phillip & Schiemann, Martin & Ströhle, Jochen & Epple, Bernd, 2021. "3D CFD simulation of a 250 MWel oxy-fuel boiler with evaluation of heat radiation calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riaza, J. & Gil, M.V. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion of coal and biomass blends," Energy, Elsevier, vol. 41(1), pages 429-435.
    2. Irfan, Muhammad Faisal & Arami-Niya, Arash & Chakrabarti, Mohammed Harun & Wan Daud, Wan Mohd. Ashri & Usman, Muhammad Rashid, 2012. "Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres," Energy, Elsevier, vol. 37(1), pages 665-672.
    3. Lai, ZhiYi & Ma, XiaoQian & Tang, YuTing & Lin, Hai, 2011. "A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA," Energy, Elsevier, vol. 36(2), pages 819-824.
    4. Burdyny, Thomas & Struchtrup, Henning, 2010. "Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process," Energy, Elsevier, vol. 35(5), pages 1884-1897.
    5. Rahman, Zia ur & Wang, Xuebin & Zhang, Jiaye & Yang, Zhiwei & Dai, Gaofeng & Verma, Piyush & Mikulcic, Hrvoje & Vujanovic, Milan & Tan, Houzhang & Axelbaum, Richard L., 2022. "Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Chowdhury, A.S.M. Arifur & Bugarin, Luz & Badhan, Antara & Choudhuri, Ahsan & Love, Norman, 2016. "Thermodynamic analysis of a directly heated oxyfuel supercritical power system," Applied Energy, Elsevier, vol. 179(C), pages 261-271.
    7. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    8. Riaza, J. & Álvarez, L. & Gil, M.V. & Pevida, C. & Pis, J.J. & Rubiera, F., 2011. "Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor," Energy, Elsevier, vol. 36(8), pages 5314-5319.
    9. Pak, Pyong Sik & Lee, Young Duk & Ahn, Kook Young, 2010. "Characteristics and economic evaluation of a power plant applying oxy-fuel combustion to increase power output and decrease CO2 emission," Energy, Elsevier, vol. 35(8), pages 3230-3238.
    10. Hnydiuk-Stefan, Anna & Składzień, Jan, 2017. "Analysis of supercritical coal fired oxy combustion power plant with cryogenic oxygen unit and turbo-compressor," Energy, Elsevier, vol. 128(C), pages 271-283.
    11. Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
    12. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    13. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    14. Oboirien, B.O. & North, B.C. & Kleyn, T., 2014. "Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations," Energy, Elsevier, vol. 66(C), pages 550-555.
    15. Tang, YuTing & Ma, XiaoQian & Lai, ZhiYi & Fan, Yunxiang, 2015. "Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres," Energy, Elsevier, vol. 90(P1), pages 1066-1074.
    16. Zhou, Kun & Lin, Qizhao & Hu, Hongwei & Hu, Huiqing & Song, Lanbo, 2017. "The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere," Energy, Elsevier, vol. 136(C), pages 173-184.
    17. Pirotta, F.J.C. & Ferreira, E.C. & Bernardo, C.A., 2013. "Energy recovery and impact on land use of Maltese municipal solid waste incineration," Energy, Elsevier, vol. 49(C), pages 1-11.
    18. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    19. Botakoz Suleimenova & Berik Aimbetov & Daulet Zhakupov & Dhawal Shah & Yerbol Sarbassov, 2022. "Co-Firing of Refuse-Derived Fuel with Ekibastuz Coal in a Bubbling Fluidized Bed Reactor: Analysis of Emissions and Ash Characteristics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    20. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:40:y:2012:i:1:p:300-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.