IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i9p5425-5439.html
   My bibliography  Save this article

Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy

Author

Listed:
  • Wang, R.Z.
  • Xia, Z.Z.
  • Wang, L.W.
  • Lu, Z.S.
  • Li, S.L.
  • Li, T.X.
  • Wu, J.Y.
  • He, S.

Abstract

Adsorption refrigeration and heat pump systems have been considered as important means for the efficient use of low-grade thermal energy of 60–150°C. Sorption systems are merely thermodynamic systems based on heat exchangers, and therefore a good design to optimize heat and mass transfer with reaction or sorption processes is very important, for which the notable technique is the use of expanded graphite to improve both heat and mass transfer in the chemisorption beds. Studies have also shown the need to enhance the heat transfer in adsorption bed by matching with the efficient heat transfer of thermal fluids. Heat pipes and good thermal loop design coupled with adsorption beds could yield higher thermal performance of a sorption system. A novel design with passive evaporation, known as rising film evaporation coupled with a gravity heat pipe was introduced for high cooling output. It has also been shown that the performance of traditional heat and mass recovery in the sorption systems is limited, and novel arrangement of thermal fluid and refrigerant may improve the performance of sorption systems. Based upon the above researches, various sorption systems have been developed, and high performances have been reached.

Suggested Citation

  • Wang, R.Z. & Xia, Z.Z. & Wang, L.W. & Lu, Z.S. & Li, S.L. & Li, T.X. & Wu, J.Y. & He, S., 2011. "Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy," Energy, Elsevier, vol. 36(9), pages 5425-5439.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:9:p:5425-5439
    DOI: 10.1016/j.energy.2011.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, G. A. & Tassou, S. A. & Kalogirou, S. A. & Wrobel, L. C., 2002. "Review of solar and low energy cooling technologies for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 557-572, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    2. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    3. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    4. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    5. González, Manuel I. & Rodríguez, Luis R. & Lucio, Jesús H., 2009. "Evaluation of thermal parameters and simulation of a solar-powered, solid-sorption chiller with a CPC collector," Renewable Energy, Elsevier, vol. 34(3), pages 570-577.
    6. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    7. Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2010. "Active low-grade energy recovery potential for building energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2736-2747, December.
    8. Singh, Ashutosh & Kumar, Sunil & Dev, Rahul, 2019. "Studies on cocopeat, sawdust and dried cow dung as desiccant for evaporative cooling system," Renewable Energy, Elsevier, vol. 142(C), pages 295-303.
    9. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    10. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    11. Saadatian, Omidreza & Haw, Lim Chin & Sopian, K. & Sulaiman, M.Y., 2012. "Review of windcatcher technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1477-1495.
    12. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    13. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    14. Mostafaeipour, Ali & Bardel, Behnoosh & Mohammadi, Kasra & Sedaghat, Ahmad & Dinpashoh, Yagob, 2014. "Economic evaluation for cooling and ventilation of medicine storage warehouses utilizing wind catchers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 12-19.
    15. Dasar, Sangappa R. & Boche, Abhijeet M. & Yadav, Ajay K. & S., Anish, 2023. "Sorption–desorption characteristics of dried cow dung with PVP and clay as composite desiccants: Experimental and exergetic analysis," Renewable Energy, Elsevier, vol. 202(C), pages 394-404.
    16. Xu, Xinhua & Yu, Jinghua & Wang, Shengwei & Wang, Jinbo, 2014. "Research and application of active hollow core slabs in building systems for utilizing low energy sources," Applied Energy, Elsevier, vol. 116(C), pages 424-435.
    17. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    18. Munyeowaji Mbikan & Tarik Al-Shemmeri, 2017. "Computational Model of a Biomass Driven Absorption Refrigeration System," Energies, MDPI, vol. 10(2), pages 1-15, February.
    19. Zogou, Olympia & Stapountzis, Herricos, 2011. "Energy analysis of an improved concept of integrated PV panels in an office building in central Greece," Applied Energy, Elsevier, vol. 88(3), pages 853-866, March.
    20. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:9:p:5425-5439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.