IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p4125-4135.html
   My bibliography  Save this article

An adsorption air conditioning system to integrate with the recent development of emission control for heavy-duty vehicles

Author

Listed:
  • Zhong, Yongfang
  • Fang, Tiegang
  • Wert, Kevin L.

Abstract

The recent development to control the emissions of large diesel engines has provided opportunities for heat-driven cooling methods in vehicles. An adsorption air conditioning system is therefore proposed in this work for heavy-duty truck application. This system is powered by engine waste heat when the engine of a truck is running. When the engine is off, it can be operated by fuel fired heaters, a newly implemented technology to reduce truck idling. Hence, this system can not only reduce engine emissions but also improve the overall energy efficiency. A lumped parameter model of the system using zeolite-water as its working pair is developed, and the adsorption capacity of zeolite is simulated with the linear driving force model. The dynamic performance of the system and a parametric study on adsorbent mass transfer, operating temperatures and cycle operating periods are presented. Alternative working pairs and the potential to commercialize the system are also discussed. This system may be designed to satisfy the cooling requirement for idle reduction of long-haul trucks.

Suggested Citation

  • Zhong, Yongfang & Fang, Tiegang & Wert, Kevin L., 2011. "An adsorption air conditioning system to integrate with the recent development of emission control for heavy-duty vehicles," Energy, Elsevier, vol. 36(7), pages 4125-4135.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4125-4135
    DOI: 10.1016/j.energy.2011.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211002817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, L.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X. & Wang, S.G., 2006. "Design, simulation and performance of a waste heat driven adsorption ice maker for fishing boat," Energy, Elsevier, vol. 31(2), pages 244-259.
    2. Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    2. Gao, P. & Wang, L.W. & Zhu, F.Q., 2021. "Vapor-compression refrigeration system coupled with a thermochemical resorption energy storage unit for a refrigerated truck," Applied Energy, Elsevier, vol. 290(C).
    3. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    4. Pang, S.C. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A., 2013. "Liquid absorption and solid adsorption system for household, industrial and automobile applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 836-847.
    5. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    6. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I – Modeling and experimental validation," Energy, Elsevier, vol. 116(P1), pages 526-538.
    7. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    8. Salvatore Vasta, 2023. "Adsorption Air-Conditioning for Automotive Applications: A Critical Review," Energies, MDPI, vol. 16(14), pages 1-35, July.
    9. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Golparvar, Behzad & Niazmand, Hamid & Sharafian, Amir & Ahmadian Hosseini, Amirjavad, 2018. "Optimum fin spacing of finned tube adsorber bed heat exchangers in an exhaust gas-driven adsorption cooling system," Applied Energy, Elsevier, vol. 232(C), pages 504-516.
    11. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordeeva, Larisa G. & Aristov, Yuriy I., 2011. "Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization," Energy, Elsevier, vol. 36(2), pages 1273-1279.
    2. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    3. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
    4. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    5. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    6. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    7. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    8. Wang, L.W. & Bao, H.S. & Wang, R.Z., 2009. "A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat," Renewable Energy, Elsevier, vol. 34(11), pages 2373-2379.
    9. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    10. Gordeeva, Larisa & Frazzica, Andrea & Sapienza, Alessio & Aristov, Yuri & Freni, Angelo, 2014. "Adsorption cooling utilizing the “LiBr/silica – ethanol” working pair: Dynamic optimization of the adsorber/heat exchanger unit," Energy, Elsevier, vol. 75(C), pages 390-399.
    11. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    12. Aristov, Yuriy I. & Glaznev, Ivan S. & Girnik, Ilya S., 2012. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration," Energy, Elsevier, vol. 46(1), pages 484-492.
    13. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    14. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    15. Dias, João M.S. & Costa, Vítor A.F., 2019. "Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?," Energy, Elsevier, vol. 174(C), pages 1110-1120.
    16. Wu, J.Y. & Wang, J.L. & Li, S. & Wang, R.Z., 2014. "Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller," Energy, Elsevier, vol. 68(C), pages 444-453.
    17. Alawadhi, Esam M., 2011. "Cooling process of water in a horizontal circular enclosure subjected to non-uniform boundary conditions," Energy, Elsevier, vol. 36(1), pages 586-594.
    18. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    19. Lu, Zisheng & Wang, Ruzhu, 2016. "Experimental performance study of sorption refrigerators driven by waste gases from fishing vessels diesel engine," Applied Energy, Elsevier, vol. 174(C), pages 224-231.
    20. Hamada, Yasuhiro & Nagata, Tsutomu & Kubota, Hideki & Ono, Takayuki & Musha, Ryosuke, 2014. "Development and characteristics of a method for self-contained ice production using cold outdoor air in winter," Energy, Elsevier, vol. 68(C), pages 939-946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:4125-4135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.