IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i1p606-612.html
   My bibliography  Save this article

Artificial immune system for fixed head hydrothermal power system

Author

Listed:
  • Basu, M.

Abstract

This paper presents artificial immune system for optimal scheduling of thermal plants in coordination with fixed head hydro units. Numerical results of two test systems have been presented to demonstrate the performance of the proposed algorithm. The results obtained from the proposed algorithm are compared with those obtained from differential evolution, particle swarm optimization and evolutionary programming technique. From numerical results, it is found that the proposed artificial immune system based approach is able to provide better solution than differential evolution, particle swarm optimization and evolutionary programming in terms of minimum cost and computation time.

Suggested Citation

  • Basu, M., 2011. "Artificial immune system for fixed head hydrothermal power system," Energy, Elsevier, vol. 36(1), pages 606-612.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:1:p:606-612
    DOI: 10.1016/j.energy.2010.09.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421000558X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.09.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smarajit Ghosh & Manvir Kaur & Suman Bhullar & Vinod Karar, 2019. "Hybrid ABC-BAT for Solving Short-Term Hydrothermal Scheduling Problems," Energies, MDPI, vol. 12(3), pages 1-15, February.
    2. Özyön, Serdar & Yaşar, Celal, 2018. "Gravitational search algorithm applied to fixed head hydrothermal power system with transmission line security constraints," Energy, Elsevier, vol. 155(C), pages 392-407.
    3. Thang Trung Nguyen & Bach Hoang Dinh & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks," Energies, MDPI, vol. 11(1), pages 1-21, January.
    4. Narang, Nitin & Dhillon, J.S. & Kothari, D.P., 2012. "Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method," Energy, Elsevier, vol. 47(1), pages 237-252.
    5. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    6. Nguyen, Thang Trung & Vo, Dieu Ngoc & Dinh, Bach Hoang, 2018. "An effectively adaptive selective cuckoo search algorithm for solving three complicated short-term hydrothermal scheduling problems," Energy, Elsevier, vol. 155(C), pages 930-956.
    7. Nguyen, Thang Trung & Vo, Dieu Ngoc & Truong, Anh Viet, 2014. "Cuckoo search algorithm for short-term hydrothermal scheduling," Applied Energy, Elsevier, vol. 132(C), pages 276-287.
    8. Soroudi, Alireza, 2013. "Robust optimization based self scheduling of hydro-thermal Genco in smart grids," Energy, Elsevier, vol. 61(C), pages 262-271.
    9. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    10. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    11. Borche Postolov & Nikolay Hinov & Atanas Iliev & Dimitar Dimitrov, 2022. "Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm," Energies, MDPI, vol. 15(16), pages 1-25, August.
    12. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    13. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    14. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    15. Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
    16. Zhang, Huifeng & Zhou, Jianzhong & Fang, Na & Zhang, Rui & Zhang, Yongchuan, 2013. "Daily hydrothermal scheduling with economic emission using simulated annealing technique based multi-objective cultural differential evolution approach," Energy, Elsevier, vol. 50(C), pages 24-37.
    17. Thang Trung Nguyen & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "Modified Differential Evolution Algorithm: A Novel Approach to Optimize the Operation of Hydrothermal Power Systems while Considering the Different Constraints and Valve Point Loading Effects," Energies, MDPI, vol. 11(3), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:1:p:606-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.