IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp930-956.html
   My bibliography  Save this article

An effectively adaptive selective cuckoo search algorithm for solving three complicated short-term hydrothermal scheduling problems

Author

Listed:
  • Nguyen, Thang Trung
  • Vo, Dieu Ngoc
  • Dinh, Bach Hoang

Abstract

This paper proposes an effectively adaptive selective cuckoo search algorithm (ASCSA) for solving short-term hydrothermal scheduling problems with available water constraint, reservoir volume constraints, and transmission network constraints. The proposed ASCSA is a newly improved version of the conventional cuckoo search algorithm to enhance the solution quality and reduce the maximum number of iterations based on two new techniques including the new ratio of the difference between the fitness function values and the integration of solutions into one group. The effectiveness of ASCSA has been validated via eight hydrothermal systems, in which the last two systems consisting of the IEEE 30-bus and IEEE 118-bus systems are considered with a set of constraints in the transmission network. To investigate the performance of ASCSA, several algorithms are also implemented in the paper such as conventional cuckoo search algorithm, modified cuckoo search algorithm, particle swarm optimization, global vision of particle swarm optimization with inertia weight, differential evolution, and improved differential evolution. From result comparisons of the test systems, the proposed ASCSA method has obtained lower total costs than other methods implemented for solving the problems. Therefore, the proposed ASCSA is a very efficient and favorable method for solving the considered hydrothermal scheduling problems.

Suggested Citation

  • Nguyen, Thang Trung & Vo, Dieu Ngoc & Dinh, Bach Hoang, 2018. "An effectively adaptive selective cuckoo search algorithm for solving three complicated short-term hydrothermal scheduling problems," Energy, Elsevier, vol. 155(C), pages 930-956.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:930-956
    DOI: 10.1016/j.energy.2018.05.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanajaoba, Sarangthem & Fernandez, Eugene, 2016. "Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System," Renewable Energy, Elsevier, vol. 96(PA), pages 1-10.
    2. Basu, M., 2011. "Artificial immune system for fixed head hydrothermal power system," Energy, Elsevier, vol. 36(1), pages 606-612.
    3. Lijin Wang & Yiwen Zhong, 2015. "Cuckoo Search Algorithm with Chaotic Maps," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, July.
    4. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    5. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basu, Mousumi, 2022. "Fuel constrained short-term hydrothermal generation scheduling," Energy, Elsevier, vol. 239(PD).
    2. Thuan Thanh Nguyen & Bach Hoang Dinh & Thai Dinh Pham & Thang Trung Nguyen, 2020. "Active Power Loss Reduction for Radial Distribution Systems by Placing Capacitors and PV Systems with Geography Location Constraints," Sustainability, MDPI, vol. 12(18), pages 1-30, September.
    3. Cui Zheyuan & Ali Thaeer Hammid & Ali Noori Kareem & Mingxin Jiang & Muamer N. Mohammed & Nallapaneni Manoj Kumar, 2021. "A Rigid Cuckoo Search Algorithm for Solving Short-Term Hydrothermal Scheduling Problem," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    4. Saqib Akram & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "Introducing Adaptive Machine Learning Technique for Solving Short-Term Hydrothermal Scheduling with Prohibited Discharge Zones," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    5. Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
    6. Chuanxiong Kang & Shaofei Wu & Eid Gul & Xiang Yu & Pingan Ren, 2022. "A 1D linearization–based MILP–NLP method for short-term hydrothermal operation [Hybrid generation of renewables increases the energy system’s robustness in a changing climate]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 540-549.
    7. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    8. Jian, Jinbao & Pan, Shanshan & Yang, Linfeng, 2019. "Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer linear programming formulation," Energy, Elsevier, vol. 171(C), pages 770-784.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Thang Trung & Vo, Dieu Ngoc & Truong, Anh Viet, 2014. "Cuckoo search algorithm for short-term hydrothermal scheduling," Applied Energy, Elsevier, vol. 132(C), pages 276-287.
    2. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    3. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    4. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    5. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    7. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    8. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    9. Narang, Nitin & Dhillon, J.S. & Kothari, D.P., 2012. "Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method," Energy, Elsevier, vol. 47(1), pages 237-252.
    10. Khiareddine, Abla & Ben Salah, Chokri & Rekioua, Djamila & Mimouni, Mohamed Faouzi, 2018. "Sizing methodology for hybrid photovoltaic /wind/ hydrogen/battery integrated to energy management strategy for pumping system," Energy, Elsevier, vol. 153(C), pages 743-762.
    11. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    12. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    13. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    14. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    15. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.
    16. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    17. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).
    18. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    19. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    20. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:930-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.