IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i11p6479-6489.html
   My bibliography  Save this article

Experimental study on the heat exchange effectiveness of a dry coil indirect evaporation cooler under various operating conditions

Author

Listed:
  • Kim, Min-Hwi
  • Kim, Jin-Hyo
  • Choi, An-Seop
  • Jeong, Jae-Weon

Abstract

In this study, a pilot Dry Coil IEC unit, an indirect evaporation cooler established by connecting a direct evaporation cooler and a sensible heat exchanger (SHE) in series, was made, and the effectiveness data of the pilot unit were acquired under various operation conditions in an environmental chamber realizing a wide-range of indoor and outdoor air conditions. The test result shows that over 40% effectiveness can be acquired even in hot and humid climates by using the Dry Coil IEC proposed in this paper. The Dry Coil IEC reduces the cooling coil size by pre-cooling the process air during the cooling season. It can also be used as an SHE reclaiming the sensible heat from the exhaust air during winter operation. The pilot unit recovered over 60% of sensible heat in the test. In addition, a simplified model of Dry Coil IEC returning the various operation conditions was developed based on existing models of an SHE and a direct evaporative cooler. A polynomial equation returning the effectiveness of the Dry Coil IEC was derived as a function of seven independent variables highly influencing the performance of the unit. The experimental data acquired by the pilot unit operation agree well with the effectiveness values of the Dry Coil IEC predicted by the proposed model. It was also identified that the proposed equation agrees well with the existing model of the Dry Coil IEC applied to the energy simulation program.

Suggested Citation

  • Kim, Min-Hwi & Kim, Jin-Hyo & Choi, An-Seop & Jeong, Jae-Weon, 2011. "Experimental study on the heat exchange effectiveness of a dry coil indirect evaporation cooler under various operating conditions," Energy, Elsevier, vol. 36(11), pages 6479-6489.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6479-6489
    DOI: 10.1016/j.energy.2011.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Qun & Pan, Ning & Guo, Zeng-Yuan, 2011. "A new approach to analysis and optimization of evaporative cooling system II: Applications," Energy, Elsevier, vol. 36(5), pages 2890-2898.
    2. Chen, Qun & Yang, Kangding & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2010. "A new approach to analysis and optimization of evaporative cooling system I: Theory," Energy, Elsevier, vol. 35(6), pages 2448-2454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Lei & Cai, Wenjian & Ding, Xudong & Chang, Weichung, 2013. "Model-based optimization for vapor compression refrigeration cycle," Energy, Elsevier, vol. 55(C), pages 392-402.
    2. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
    3. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    4. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    5. He, Suoying & Gurgenci, Hal & Guan, Zhiqiang & Huang, Xiang & Lucas, Manuel, 2015. "A review of wetted media with potential application in the pre-cooling of natural draft dry cooling towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 407-422.
    6. Mekhilef, S. & Faramarzi, S.Z. & Saidur, R. & Salam, Zainal, 2013. "The application of solar technologies for sustainable development of agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 583-594.
    7. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    2. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    3. Chen, Qun & Xu, Yun-Chao & Hao, Jun-Hong, 2014. "An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory," Applied Energy, Elsevier, vol. 113(C), pages 982-989.
    4. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    5. Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
    6. Yuan, Fang & Chen, Qun, 2012. "A global optimization method for evaporative cooling systems based on the entransy theory," Energy, Elsevier, vol. 42(1), pages 181-191.
    7. Cui, Haijiao & Li, Nianping & Wang, Xinlei & Peng, Jinqing & Li, Yuan & Wu, Zhibin, 2017. "Optimization of reversibly used cooling tower with downward spraying," Energy, Elsevier, vol. 127(C), pages 30-43.
    8. Lemouari, M. & Boumaza, M. & Kaabi, A., 2011. "Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower," Energy, Elsevier, vol. 36(10), pages 5815-5823.
    9. Wang, C. & Zhu, Y., 2018. "Entransy analysis on optimization of a double-stage latent heat storage unit with the consideration of an unequal separation," Energy, Elsevier, vol. 148(C), pages 386-396.
    10. Yu Zhai & Xu Zhao & Zhifeng Dong, 2022. "Research on Performance Optimization of Gravity Heat Pipe for Mine Return Air," Energies, MDPI, vol. 15(22), pages 1-14, November.
    11. Zhan, Changhong & Duan, Zhiyin & Zhao, Xudong & Smith, Stefan & Jin, Hong & Riffat, Saffa, 2011. "Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings," Energy, Elsevier, vol. 36(12), pages 6790-6805.
    12. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    13. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    14. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    15. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    16. Chen, Qun & Pan, Ning & Guo, Zeng-Yuan, 2011. "A new approach to analysis and optimization of evaporative cooling system II: Applications," Energy, Elsevier, vol. 36(5), pages 2890-2898.
    17. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    18. Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
    19. Gordeeva, Larisa G. & Aristov, Yuriy I., 2011. "Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization," Energy, Elsevier, vol. 36(2), pages 1273-1279.
    20. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W. & Zhou, P., 2015. "Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates," Applied Energy, Elsevier, vol. 138(C), pages 291-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6479-6489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.