Author
Listed:
- Torsten Berning
(AAU Energy, Aalborg University, DK-9220 Aalborg, Denmark)
- Tianbao Gu
(AAU Energy, Aalborg University, DK-9220 Aalborg, Denmark)
- Chungen Yin
(AAU Energy, Aalborg University, DK-9220 Aalborg, Denmark)
Abstract
Indirect evaporative coolers (IECs) are becoming a viable alternative to the more energy-intensive traditional HVAC systems for space cooling, especially in arid regions. In this work, a recently developed computational model of an IEC was used to conduct a parametric study. The model employs a spray dryer model to track the flow path and evaporation rate of droplets. The key parameters investigated were the temperature of the droplets, a bypass effect where the amount of exhaust air and water was reduced to as low as 10%, and the length of the heat exchanger. The results suggest that the wet bulb efficiency could be increased from the previously observed 35% to 72.5% if the water temperature is decreased to 16 °C. In order to drastically increase the performance, the heat exchanger length should be increased from 50 cm to 100 cm, which could still end up in a more compact design overall as fewer plates are required. The bypass study resulted in peak performance when 40% of the secondary air flow was used as working air in conjunction with a proportional reduction in water usage. Overall, the computational model has been employed in an attempt to reduce the bulkiness, increase the efficiency and reduce the water consumption of such a system.
Suggested Citation
Torsten Berning & Tianbao Gu & Chungen Yin, 2025.
"A Parametric Study of an Indirect Evaporative Cooler Using a Spray Dryer Model,"
Energies, MDPI, vol. 18(16), pages 1-18, August.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:16:p:4345-:d:1724820
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4345-:d:1724820. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.