IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i3p1497-1504.html
   My bibliography  Save this article

Joint economic and emission dispatch in energy markets: A multiobjective mathematical programming approach

Author

Listed:
  • Vahidinasab, V.
  • Jadid, S.

Abstract

Economic load dispatch is the method of determining the most efficient, low-cost and reliable operation of a power system by dispatching the available electricity generation resources to supply the load on the system. Environmental concerns that arise due to the operation of fossil fuel fired electric generators, change the classical problem into multiobjective emission/economic dispatch (MEED) which is formulated as a constrained nonlinear multiobjective mathematical programming (MMP). The proposed MEED formulation includes emission minimization objective, AC load flow constraints and security constraints of the power system which usually are found simultaneously in real-world power systems. The proposed model has a more accurate evaluation of transmission losses obtained from the load flow equations. The MMP approach based on ɛ-constraint algorithm has been proposed for generating Pareto-optimal solutions of power systems MEED problem. Moreover, fuzzy decision making process is employed to extract one of the Pareto-optimal solutions as the best compromise nondominated solution. The proposed approach is simulated on the IEEE 30-bus six-generator test system and obtained results have been comprehensively compared with some of the most recently published research in the area (from the both aspects of precision and execution tome) which confirms the potential and effectiveness of the proposed approach.

Suggested Citation

  • Vahidinasab, V. & Jadid, S., 2010. "Joint economic and emission dispatch in energy markets: A multiobjective mathematical programming approach," Energy, Elsevier, vol. 35(3), pages 1497-1504.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1497-1504
    DOI: 10.1016/j.energy.2009.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan F. Bard, 1988. "Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation," Operations Research, INFORMS, vol. 36(5), pages 756-766, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagisa Sugishita & Andreas Grothey & Ken McKinnon, 2024. "Use of Machine Learning Models to Warmstart Column Generation for Unit Commitment," INFORMS Journal on Computing, INFORMS, vol. 36(4), pages 1129-1146, July.
    2. Adriaan Weijde & Benjamin Hobbs, 2011. "Locational-based coupling of electricity markets: benefits from coordinating unit commitment and balancing markets," Journal of Regulatory Economics, Springer, vol. 39(3), pages 223-251, June.
    3. Löschenbrand, Markus & Wei, Wei & Liu, Feng, 2018. "Hydro-thermal power market equilibrium with price-making hydropower producers," Energy, Elsevier, vol. 164(C), pages 377-389.
    4. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    5. Maturana, Jorge & Riff, Maria-Cristina, 2007. "Solving the short-term electrical generation scheduling problem by an adaptive evolutionary approach," European Journal of Operational Research, Elsevier, vol. 179(3), pages 677-691, June.
    6. Jens Hönen & Johann L. Hurink & Bert Zwart, 2023. "A classification scheme for local energy trading," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 85-118, March.
    7. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    8. Tatiana González Grandón & Fernando de Cuadra García & Ignacio Pérez-Arriaga, 2021. "A Market-Driven Management Model for Renewable-Powered Undergrid Mini-Grids," Energies, MDPI, vol. 14(23), pages 1-29, November.
    9. Jorge Valenzuela & Mainak Mazumdar, 2003. "Commitment of Electric Power Generators Under Stochastic Market Prices," Operations Research, INFORMS, vol. 51(6), pages 880-893, December.
    10. Ping Che & Yanyan Zhang & Jin Lang, 2019. "Emission-Intensity-Based Carbon Tax and Its Impact on Generation Self-Scheduling," Energies, MDPI, vol. 12(5), pages 1-17, February.
    11. Dang, Chuangyin & Li, Minqiang, 2007. "A floating-point genetic algorithm for solving the unit commitment problem," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1370-1395, September.
    12. Ludwig Kuntz & Felix Müsgens, 2007. "Modelling start-up costs of multiple technologies in electricity markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 21-32, August.
    13. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    14. Tadahiro Taniguchi & Koki Kawasaki & Yoshiro Fukui & Tomohiro Takata & Shiro Yano, 2015. "Automated Linear Function Submission-Based Double Auction as Bottom-up Real-Time Pricing in a Regional Prosumers’ Electricity Network," Energies, MDPI, vol. 8(7), pages 1-26, July.
    15. de Queiroz, A.R. & Mulcahy, D. & Sankarasubramanian, A. & Deane, J.P. & Mahinthakumar, G. & Lu, N. & DeCarolis, J.F., 2019. "Repurposing an energy system optimization model for seasonal power generation planning," Energy, Elsevier, vol. 181(C), pages 1321-1330.
    16. Pascale Bendotti & Pierre Fouilhoux & Cécile Rottner, 2019. "On the complexity of the Unit Commitment Problem," Annals of Operations Research, Springer, vol. 274(1), pages 119-130, March.
    17. Zhong, Haiwang & Xia, Qing & Chen, Yuguo & Kang, Chongqing, 2015. "Energy-saving generation dispatch toward a sustainable electric power industry in China," Energy Policy, Elsevier, vol. 83(C), pages 14-25.
    18. C. L. Tseng & C. A. Li & S. S. Oren, 2000. "Solving the Unit Commitment Problem by a Unit Decommitment Method," Journal of Optimization Theory and Applications, Springer, vol. 105(3), pages 707-730, June.
    19. Fu Lin & Sven Leyffer & Todd Munson, 2016. "A two-level approach to large mixed-integer programs with application to cogeneration in energy-efficient buildings," Computational Optimization and Applications, Springer, vol. 65(1), pages 1-46, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:3:p:1497-1504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.