IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3048-d1675048.html
   My bibliography  Save this article

Fuzzy-Based Fitness–Distance Balance Snow Ablation Optimizer Algorithm for Optimal Generation Planning in Power Systems

Author

Listed:
  • Muhammet Demirbas

    (Department of Electrical and Energy, Tosya Vocational School, Kastamonu University, 37302 Kastamonu, Turkey)

  • Serhat Duman

    (Department of Electrical Engineering, Faculty of Engineering and Natural Sciences, Bandirma Onyedi Eylul University, 10200 Bandirma, Turkey)

  • Burcin Ozkaya

    (Department of Electrical Engineering, Faculty of Engineering and Natural Sciences, Bandirma Onyedi Eylul University, 10200 Bandirma, Turkey)

  • Yunus Balci

    (Department of Electrical Engineering, Faculty of Engineering and Natural Sciences, Bandirma Onyedi Eylul University, 10200 Bandirma, Turkey)

  • Deniz Ersoy

    (Postgraduate Education Institute, Bandirma Onyedi Eylül University, 10200 Bandirma, Turkey)

  • M. Kenan Döşoğlu

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81620 Duzce, Turkey)

  • Ugur Guvenc

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81620 Duzce, Turkey)

  • Bekir Emre Altun

    (Department of Electrical and Energy, Amasya Technical Sciences Vocational School, Amasya University, 05000 Amasya, Turkey)

  • Hasan Uzel

    (Department of Electrical and Energy, Akdagmadeni Vocational School, Yozgat Bozok University, 66100 Yozgat, Turkey)

  • Enes Kaymaz

    (Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81620 Duzce, Turkey)

Abstract

Economic dispatch (ED) is one of the most important problems in terms of energy planning, management, and operation in power systems. This study presents a snow ablation optimizer (SAO) algorithm developed with the fuzzy-based fitness–distance balance (FFDB) method for solving ED problems in small-, medium- and large-scale electric power systems and determining the optimal operating values of fossil fuel thermal generation units. The FFDB-based SAO algorithm (FFDBSAO) controls early convergence problems through balancing exploration–exploitation and improves the solving of high-dimensional optimization problems. In the light of extensive experimental studies conducted on CEC2020, CEC2022, and classical benchmark test functions, the FFDBSAO2 algorithm has shown superior performance against its competitors. Wilcoxon and Friedman’s statistical analysis results confirm the performance and efficiency of the algorithm. Moreover, the proposed algorithm significantly reduces total fuel cost by optimizing fossil fuel thermal generation units. According to the results, the scalability and robustness of the algorithm make it a valuable tool for solving large-scale optimization problems in the planning of electric power systems.

Suggested Citation

  • Muhammet Demirbas & Serhat Duman & Burcin Ozkaya & Yunus Balci & Deniz Ersoy & M. Kenan Döşoğlu & Ugur Guvenc & Bekir Emre Altun & Hasan Uzel & Enes Kaymaz, 2025. "Fuzzy-Based Fitness–Distance Balance Snow Ablation Optimizer Algorithm for Optimal Generation Planning in Power Systems," Energies, MDPI, vol. 18(12), pages 1-41, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3048-:d:1675048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3048/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Coelho, Leandro dos Santos & Souza, Rodrigo Clemente Thom & Mariani, Viviana Cocco, 2009. "Improved differential evolution approach based on cultural algorithm and diversity measure applied to solve economic load dispatch problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3136-3147.
    2. Liu, Qianlong & Zhang, Chu & Li, Zhengbo & Peng, Tian & Zhang, Zhao & Du, Dongsheng & Nazir, Muhammad Shahzad, 2024. "Multi-strategy adaptive guidance differential evolution algorithm using fitness-distance balance and opposition-based learning for constrained global optimization of photovoltaic cells and modules," Applied Energy, Elsevier, vol. 353(PA).
    3. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    4. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    5. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    6. Wang, Zheng & Peng, Tian & Zhang, Xuedong & Chen, Jialei & Qian, Shijie & Zhang, Chu, 2025. "Enhancing multi-step short-term solar radiation forecasting based on optimized generalized regularized extreme learning machine and multi-scale Gaussian data augmentation technique," Applied Energy, Elsevier, vol. 377(PD).
    7. Jonathan F. Bard, 1988. "Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation," Operations Research, INFORMS, vol. 36(5), pages 756-766, October.
    8. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    2. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    3. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    4. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    5. Xu Chen & Bin Xu & Wenli Du, 2018. "An Improved Particle Swarm Optimization with Biogeography-Based Learning Strategy for Economic Dispatch Problems," Complexity, Hindawi, vol. 2018, pages 1-15, July.
    6. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    7. Ali S. Alghamdi, 2022. "Greedy Sine-Cosine Non-Hierarchical Grey Wolf Optimizer for Solving Non-Convex Economic Load Dispatch Problems," Energies, MDPI, vol. 15(11), pages 1-19, May.
    8. Meng, Anbo & Li, Jinbei & Yin, Hao, 2016. "An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects," Energy, Elsevier, vol. 113(C), pages 1147-1161.
    9. Chen, Xu, 2020. "Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects," Energy, Elsevier, vol. 203(C).
    10. Zare, Mohsen & Farhang, Saman & Akbari, Mohammad Amin & Azizipanah-Abarghooee, Rasoul & Trojovský, Pavel, 2024. "Optimizing reserve-constrained economic dispatch: Cheetah optimizer with constraint handling method in static/dynamic/single/multi-area systems," Energy, Elsevier, vol. 313(C).
    11. Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.
    12. Jebaraj, Luke & Venkatesan, Chakkaravarthy & Soubache, Irisappane & Rajan, Charles Christober Asir, 2017. "Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1206-1220.
    13. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    14. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    15. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    16. Zhang, Le & Khishe, Mohammad & Mohammadi, Mokhtar & Mohammed, Adil Hussein, 2022. "Environmental economic dispatch optimization using niching penalized chimp algorithm," Energy, Elsevier, vol. 261(PA).
    17. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    18. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
    19. Chun-Yao Lee & Maickel Tuegeh, 2020. "An Optimal Solution for Smooth and Non-Smooth Cost Functions-Based Economic Dispatch Problem," Energies, MDPI, vol. 13(14), pages 1-16, July.
    20. Nagisa Sugishita & Andreas Grothey & Ken McKinnon, 2024. "Use of Machine Learning Models to Warmstart Column Generation for Unit Commitment," INFORMS Journal on Computing, INFORMS, vol. 36(4), pages 1129-1146, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3048-:d:1675048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.