IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v105y2000i3d10.1023_a1004653526131.html
   My bibliography  Save this article

Solving the Unit Commitment Problem by a Unit Decommitment Method

Author

Listed:
  • C. L. Tseng

    (University of Maryland)

  • C. A. Li

    (Pacific Gas and Electric Company)

  • S. S. Oren

    (University of California at Berkeley)

Abstract

In this paper, we present a unified decommitment method to solve the unit commitment problem. This method starts with a solution having all available units online at all hours in the planning horizon and determines an optimal strategy for decommitting units one at a time. We show that the proposed method may be viewed as an approximate implementation of the Lagrangian relaxation approach and that the number of iterations is bounded by the number of units. Numerical tests suggest that the proposed method is a reliable, efficient, and robust approach for solving the unit commitment problem.

Suggested Citation

  • C. L. Tseng & C. A. Li & S. S. Oren, 2000. "Solving the Unit Commitment Problem by a Unit Decommitment Method," Journal of Optimization Theory and Applications, Springer, vol. 105(3), pages 707-730, June.
  • Handle: RePEc:spr:joptap:v:105:y:2000:i:3:d:10.1023_a:1004653526131
    DOI: 10.1023/A:1004653526131
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1004653526131
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1004653526131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan F. Bard, 1988. "Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation," Operations Research, INFORMS, vol. 36(5), pages 756-766, October.
    2. John A. Muckstadt & Sherri A. Koenig, 1977. "An Application of Lagrangian Relaxation to Scheduling in Power-Generation Systems," Operations Research, INFORMS, vol. 25(3), pages 387-403, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Lohmann & Steffen Rebennack, 2017. "Tailored Benders Decomposition for a Long-Term Power Expansion Model with Short-Term Demand Response," Management Science, INFORMS, vol. 63(6), pages 2027-2048, June.
    2. Voorspools, Kris R. & D'haeseleer, William D., 2003. "Long-term Unit Commitment optimisation for large power systems: unit decommitment versus advanced priority listing," Applied Energy, Elsevier, vol. 76(1-3), pages 157-167, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    2. Maturana, Jorge & Riff, Maria-Cristina, 2007. "Solving the short-term electrical generation scheduling problem by an adaptive evolutionary approach," European Journal of Operational Research, Elsevier, vol. 179(3), pages 677-691, June.
    3. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    4. Adriaan Weijde & Benjamin Hobbs, 2011. "Locational-based coupling of electricity markets: benefits from coordinating unit commitment and balancing markets," Journal of Regulatory Economics, Springer, vol. 39(3), pages 223-251, June.
    5. Ramteen Sioshansi and Ashlin Tignor, 2012. "Do Centrally Committed Electricity Markets Provide Useful Price Signals?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Löschenbrand, Markus & Wei, Wei & Liu, Feng, 2018. "Hydro-thermal power market equilibrium with price-making hydropower producers," Energy, Elsevier, vol. 164(C), pages 377-389.
    7. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
    8. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    9. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    10. Jens Hönen & Johann L. Hurink & Bert Zwart, 2023. "A classification scheme for local energy trading," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 85-118, March.
    11. Samer Takriti & Benedikt Krasenbrink & Lilian S.-Y. Wu, 2000. "Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem," Operations Research, INFORMS, vol. 48(2), pages 268-280, April.
    12. Claude Lemaréchal, 2007. "The omnipresence of Lagrange," Annals of Operations Research, Springer, vol. 153(1), pages 9-27, September.
    13. Tatiana González Grandón & Fernando de Cuadra García & Ignacio Pérez-Arriaga, 2021. "A Market-Driven Management Model for Renewable-Powered Undergrid Mini-Grids," Energies, MDPI, vol. 14(23), pages 1-29, November.
    14. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    15. Jorge Valenzuela & Mainak Mazumdar, 2003. "Commitment of Electric Power Generators Under Stochastic Market Prices," Operations Research, INFORMS, vol. 51(6), pages 880-893, December.
    16. Raymond B. Johnson & Alva J. Svoboda & Claudia Greif & Ali Vojdani & Fulin Zhuang, 1998. "Positioning for a Competitive Electric Industry with PG&E's Hydro-Thermal Optimization Model," Interfaces, INFORMS, vol. 28(1), pages 53-74, February.
    17. Ping Che & Yanyan Zhang & Jin Lang, 2019. "Emission-Intensity-Based Carbon Tax and Its Impact on Generation Self-Scheduling," Energies, MDPI, vol. 12(5), pages 1-17, February.
    18. Dang, Chuangyin & Li, Minqiang, 2007. "A floating-point genetic algorithm for solving the unit commitment problem," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1370-1395, September.
    19. Ludwig Kuntz & Felix Müsgens, 2007. "Modelling start-up costs of multiple technologies in electricity markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 21-32, August.
    20. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:105:y:2000:i:3:d:10.1023_a:1004653526131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.