IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022893.html
   My bibliography  Save this article

Performance of a novel open double absorption heat transformer for freshwater

Author

Listed:
  • Marquez-Nolasco, A.
  • Abundis-Fong, H.F.
  • Hernandez, J.A.
  • Huicochea, A.
  • Demesa, N.

Abstract

A recent alternative to obtain freshwater is the open single absorption heat transformer, which can produce freshwater at different points of the thermodynamic cycle with free energy (residual or renewable). To date, few studies on open single-absorption heat transformers with a distillation system have been reported in the literature. The use of an Open Double Absorption Heat Transformer (advanced cycle) used to desalinate water by single-effect evaporation is proposed for the first time to give continuity to this research field. The aim is to analyse the energy and exergy performance by using the first and second laws of thermodynamics, as well as its cost-effectiveness to determine its economic feasibility. The distillation system is coupled to the absorber at high pressure to remove useful heat, which is used in the evaporation process at medium pressure to obtain a part of the distilled water, while another part is obtained in the condenser at low pressure. This arrangement can distil water up to 1.634 kg/s (77.2 % is extracted at low pressure and temperature in the condenser, and 22.8 % at medium temperature and pressure in the evaporator). In comparison with a Closed Double Absorption Heat Transformer, this proposed coupling produces up to 2.57 times more distilled water (1.297 kg/s), a performance ratio of 3.38 times more (1.15), and a coefficient of operation of 1.83 times more (0.55), and from the exergy point of view, the evaporator presents the highest irreversibility of 36.6 % (205.6 kW), while the absorber/evaporator reaches the best exergy efficiency (0.91) with a high investment cost (34 % of total investment), considering an absorber temperature of 170 °C, and absorber/evaporator temperature of 130 °C. With respect to cost-effectiveness, the payback is 5.7 years with a projection of a useful life of 25 years using a flux relation in the absorber/evaporator of 13.08 and a flux relation in the absorber of 8.14.

Suggested Citation

  • Marquez-Nolasco, A. & Abundis-Fong, H.F. & Hernandez, J.A. & Huicochea, A. & Demesa, N., 2025. "Performance of a novel open double absorption heat transformer for freshwater," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022893
    DOI: 10.1016/j.energy.2025.136647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Parham, Kiyan & Alimoradiyan, Hamed & Assadi, Mohsen, 2017. "Energy, exergy and environmental analysis of a novel combined system producing power, water and hydrogen," Energy, Elsevier, vol. 134(C), pages 882-892.
    2. Yang, Sheng & Qian, Yu & Wang, Yifan & Yang, Siyu, 2017. "A novel cascade absorption heat transformer process using low grade waste heat and its application to coal to synthetic natural gas," Applied Energy, Elsevier, vol. 202(C), pages 42-52.
    3. Horuz, Ilhami & Kurt, Bener, 2010. "Absorption heat transformers and an industrial application," Renewable Energy, Elsevier, vol. 35(10), pages 2175-2181.
    4. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    5. Zeng, Xingyan & Zhu, Lin & Huang, Yue & Lv, Liping & Zhang, Chaoli & Hao, Qiang & Fan, Junming, 2024. "Combined pinch and exergy analysis for post-combustion carbon capture NGCC integrated with absorption heat transformer and flash evaporator," Energy, Elsevier, vol. 288(C).
    6. Wang, Shikuan & Liu, Yilun & Chen, Yao & Wang, Qin & Xu, Xiangguo & Chen, Guangming & Deng, Shiming, 2019. "Experimental investigations on the temperature lift performance of a novel diffusion absorption heat transformer," Energy, Elsevier, vol. 170(C), pages 906-914.
    7. Yin, Juan & Shi, Lin & Zhu, Ming-Shan & Han, Li-Zhong, 2000. "Performance analysis of an absorption heat transformer with different working fluid combinations," Applied Energy, Elsevier, vol. 67(3), pages 281-292, November.
    8. Hernández-Magallanes, J.A. & Heard, C.L. & Best, R. & Rivera, W., 2018. "Modeling of a new absorption heat pump-transformer used to produce heat and power simultaneously," Energy, Elsevier, vol. 165(PA), pages 112-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yee-Ting & Hong, Sihui & Chien, Liang-Han & Lin, Chih-Jer & Yang, An-Shik, 2020. "Heat transfer and pressure drop of film condensation in a horizontal minitube for HFO1234yf refrigerant," Applied Energy, Elsevier, vol. 274(C).
    2. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    3. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    4. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    5. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    6. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    7. Oluleye, Gbemi & Smith, Robin & Jobson, Megan, 2016. "Modelling and screening heat pump options for the exploitation of low grade waste heat in process sites," Applied Energy, Elsevier, vol. 169(C), pages 267-286.
    8. Xu, Qingyu & Lu, Ding & Chen, Gaofei & Guo, Hao & Dong, Xueqiang & Zhao, Yanxing & Shen, Jun & Gong, Maoqiong, 2019. "Experimental study on an absorption refrigeration system driven by temperature-distributed heat sources," Energy, Elsevier, vol. 170(C), pages 471-479.
    9. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    10. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    11. Yang, Fusheng & Wu, Zhen & Liu, Shengzhe & Zhang, Yang & Wang, Geoff & Zhang, Zaoxiao & Wang, Yuqi, 2018. "Theoretical formulation and performance analysis of a novel hydride heat Pump(HHP) integrated heat recovery system," Energy, Elsevier, vol. 163(C), pages 208-220.
    12. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    13. Lee, Kuan-Ting & Cheng, Ching-Lin & Lee, Da-Sheng & Chen, Wei-Hsin & Vo, Dai-Viet N. & Ding, Lu & Lam, Su Shiung, 2022. "Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel," Energy, Elsevier, vol. 239(PE).
    14. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    15. Wang, Shikuan & Liu, Yilun & Chen, Yao & Wang, Qin & Xu, Xiangguo & Chen, Guangming & Deng, Shiming, 2019. "Experimental investigations on the temperature lift performance of a novel diffusion absorption heat transformer," Energy, Elsevier, vol. 170(C), pages 906-914.
    16. Liu, Zijian & Lu, Ding & Tao, Shen & Chen, Rundong & Gong, Maoqiong, 2024. "Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer," Energy, Elsevier, vol. 299(C).
    17. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    18. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    19. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    20. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.