IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022509.html
   My bibliography  Save this article

Multi-dimensional performance evaluation of straw heat utilization scenarios based on transportation and boiler type

Author

Listed:
  • Li, Tong
  • Wei, Guoxia
  • Liu, Hanqiao
  • Zhu, Yuwen
  • Gong, Yongyue
  • Liu, Tong
  • Zhang, Youcheng

Abstract

Biomass energy utilization is one of the effective technological ways to achieve the goal of carbon neutrality. Different scenarios for heat utilization of straw in China, namely straw pellet fuel boiler for heating, straw gasifier for cogeneration and straw direct combustion boilers for cogeneration (circulating fluidized bed, water-cooled vibrating grate and combined grate) and were evaluated and compared by energy flow analysis (EFA), life cycle assessment (LCA) and life cycle costing (LCC) methods. The system boundary includes two stages: (Ⅰ) straw collection, processing and transportation; (Ⅱ) straw energy conversion. EFA results show that the heat utilization efficiency of corn straw direct combustion cogeneration scenarios is 35.50 %–39.81 %, which is higher than the 30.13 % of the gasification cogeneration scenarios. LCA results show that the straw direct combustion cogeneration scenarios is more environmentally friendly, in which the combined grate exhibits the lowest environmental impact with an ECER value of −2.8 × 10−9. LCC results show that the combined grate scenario has the lowest economic cost of −165.05 RMB, but the payback time as 16 years. The straw heating scenario has the highest economic cost of −66.89 RMB, but it only takes 7 years to break even. Overall, combined grate cogeneration is more environmentally friendly, but less economically sustainable. Transportation accounts for 2.3 %–3.8 % of the environmental impact throughout the entire lifecycle and increases with factory scale.

Suggested Citation

  • Li, Tong & Wei, Guoxia & Liu, Hanqiao & Zhu, Yuwen & Gong, Yongyue & Liu, Tong & Zhang, Youcheng, 2025. "Multi-dimensional performance evaluation of straw heat utilization scenarios based on transportation and boiler type," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022509
    DOI: 10.1016/j.energy.2025.136608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    2. Liu, Hanqiao & Qiao, Haoyu & Liu, Shiqi & Wei, Guoxia & Zhao, Hailong & Li, Kai & Weng, Fangkai, 2023. "Energy, environment and economy assessment of sewage sludge incineration technologies in China," Energy, Elsevier, vol. 264(C).
    3. Cheng, Guishi & Zhao, Ying & Pan, Shijiu & Wang, Xiaoqiang & Dong, Changqing, 2020. "A comparative life cycle analysis of wheat straw utilization modes in China," Energy, Elsevier, vol. 194(C).
    4. Parascanu, M.M. & Puig-Gamero, M. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2019. "Comparison of three Mexican biomasses valorization through combustion and gasification: Environmental and economic analysis," Energy, Elsevier, vol. 189(C).
    5. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    6. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    2. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    3. Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
    4. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    6. Yao, Tianfu & Song, Junnian & Xing, Jiahao & Yang, Wei, 2025. "Water-energy-waste metabolic integration unlocks co-benefits in China's food processing sector," Energy, Elsevier, vol. 323(C).
    7. Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Combining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant," Resources, MDPI, vol. 9(6), pages 1-21, June.
    8. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    9. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    10. Xin, Yu & Xing, Xueli & Li, Xiang & Hong, Hui, 2024. "A biomass–solar hybrid gasification system by solar pyrolysis and PV– Solid oxide electrolysis cell for sustainable fuel production," Applied Energy, Elsevier, vol. 356(C).
    11. Pietro Romano & Adriana Zuffranieri & Gabriele Di Giacomo, 2025. "Energy Valorization and Resource Recovery from Municipal Sewage Sludge: Evolution, Recent Advances, and Future Prospects," Energies, MDPI, vol. 18(13), pages 1-32, June.
    12. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    13. Ricardo Rebolledo-Leiva & Sofía Estévez & Diógenes Hernández & Gumersindo Feijoo & María Teresa Moreira & Sara González-García, 2024. "Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis," Resources, MDPI, vol. 13(11), pages 1-18, November.
    14. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Li, Yang & Su, Zhanpeng, 2022. "Agri-biomass supply chain optimization in north China: Model development and application," Energy, Elsevier, vol. 239(PD).
    15. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
    16. Lin, Pengmusen & Yu, Xinyu & Wang, Han & Ming, Hui & Ge, Shengbo & Liu, Fang & Peng, Haowei & Sonne, Christian & Zhang, Libo, 2023. "Life cycle assessment of bio-oil prepared from low-temperature hydrothermal oxide-catalyzed cotton stalk," Energy, Elsevier, vol. 282(C).
    17. Chen, Chenghan & Wang, Yanwei & Zhu, Qili & Tan, Furong & He, Mingxiong & Hu, Guoquan, 2024. "Enhancing bioethanol conversion from straw by a novel circulation promotion method," Energy, Elsevier, vol. 307(C).
    18. Wang, Ying & Yan, Yuxin & Lin, Qingyang & Liu, Hanxiao & Luo, Xiang & Zheng, Chenghang & Wu, Tao & Gao, Xiang, 2024. "Multi-scope decarbonization and environmental impacts evaluation for biomass fuels co-firing CHP units in China," Applied Energy, Elsevier, vol. 372(C).
    19. Abudu, Hermas & Cai, Xiangyu & Lin, Boqiang, 2022. "How upstream petroleum industry affects economic growth and development in petroleum producing-countries: Evidence from Ghana," Energy, Elsevier, vol. 260(C).
    20. Li, Sibiao & Zhang, Xiaohang & Ma, Pengbo & Li, Wenxi & Zhang, Xuechao & Wang, Ruyi & Hui, Yunting & You, Yong & Wang, Decheng, 2025. "A review of research progress in the compaction of major crop waste by mechanical equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.