IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022418.html
   My bibliography  Save this article

Power loss minimization-oriented reactive power control for wind farm equipped with distributed energy storages using clustering-based data-driven method

Author

Listed:
  • Han, Ji
  • Zhang, Di
  • Jia, Bohui
  • Xie, Longjie
  • Wan, Weijia
  • Tan, Junyang
  • Chen, Zhe

Abstract

This paper presents a data-driven based reactive power control method for the wind farm, in which every wind turbine is equipped with a standalone distributed energy storage unit. Firstly, the hierarchical control framework is adopted through dividing the wind turbines and standalone distributed energy storage into groups. In the process of grouping, multi-view clustering is applied to help the controller get valid results in a wide range of wind conditions. Then, the active power loss models within the wind farm are constructed, and a reactive power control framework is designed through the upper-level coordination of multiple deep reinforcement learning agents and the lower-level power distribution. Especially, a similarity-based discount factor is proposed in the reward function of each agent to reduce the impacts from the agents with wide differences and improve the control convergence. A modified wind power system is utilized for case study, and several frameworks using different grouping schemes and deep reinforcement learning algorithms are defined for comparison. The results indicate that the participation of the standalone distributed energy storage in the reactive power control can effectively reduce the active power losses within the wind farm; the proposed method can achieve stable, fast and accurate control under variable operation conditions.

Suggested Citation

  • Han, Ji & Zhang, Di & Jia, Bohui & Xie, Longjie & Wan, Weijia & Tan, Junyang & Chen, Zhe, 2025. "Power loss minimization-oriented reactive power control for wind farm equipped with distributed energy storages using clustering-based data-driven method," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022418
    DOI: 10.1016/j.energy.2025.136599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiawen & Yu, Tao & Zhang, Xiaoshun & Li, Fusheng & Lin, Dan & Zhu, Hanxin, 2021. "Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    2. Tapia, A. & Tapia, G. & Ostolaza, J.X., 2004. "Reactive power control of wind farms for voltage control applications," Renewable Energy, Elsevier, vol. 29(3), pages 377-392.
    3. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Martinez-Rojas, Marcela & Sumper, Andreas & Gomis-Bellmunt, Oriol & Sudrià-Andreu, Antoni, 2011. "Reactive power dispatch in wind farms using particle swarm optimization technique and feasible solutions search," Applied Energy, Elsevier, vol. 88(12), pages 4678-4686.
    6. Chen, Hao, 2022. "Cluster-based ensemble learning for wind power modeling from meteorological wind data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Ding, Zhixiong & Wu, Wei & Leung, Michael K.H., 2022. "On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
    9. Li, Jiawen & Yu, Tao & Yang, Bo, 2021. "A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 304(C).
    10. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Linfei & Li, Yu, 2022. "Hybrid multi-agent emotional deep Q network for generation control of multi-area integrated energy systems," Applied Energy, Elsevier, vol. 324(C).
    2. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    3. Mazare, Mahmood, 2024. "Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning," Applied Energy, Elsevier, vol. 353(PA).
    4. Baohua Zhang & Weihao Hu & Peng Hou & Jin Tan & Mohsen Soltani & Zhe Chen, 2017. "Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm," Energies, MDPI, vol. 10(7), pages 1-17, June.
    5. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    6. Li, Jiawen & Yu, Tao & Zhang, Xiaoshun, 2022. "Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    7. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Co-optimization for day-ahead scheduling and flexibility response mode of a hydro–wind–solar hybrid system considering forecast uncertainty of variable renewable energy," Energy, Elsevier, vol. 311(C).
    8. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    9. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    10. Bogdan Tomoiagă & Mircea Chindriş & Andreas Sumper & Antoni Sudria-Andreu & Roberto Villafafila-Robles, 2013. "Pareto Optimal Reconfiguration of Power Distribution Systems Using a Genetic Algorithm Based on NSGA-II," Energies, MDPI, vol. 6(3), pages 1-17, March.
    11. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    12. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    13. Fan, Xiaoyu & Xu, Hao & Li, Yihong & Li, Junxian & Wang, Zhikang & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration," Applied Energy, Elsevier, vol. 371(C).
    14. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    15. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    16. Boynuegri, A.R. & Vural, B. & Tascikaraoglu, A. & Uzunoglu, M. & Yumurtacı, R., 2012. "Voltage regulation capability of a prototype Static VAr Compensator for wind applications," Applied Energy, Elsevier, vol. 93(C), pages 422-431.
    17. Pengcheng Ni & Zhiyuan Ye & Can Cao & Zhimin Guo & Jian Zhao & Xing He, 2023. "Cooperative Game-Based Collaborative Optimal Regulation-Assisted Digital Twins for Wide-Area Distributed Energy," Energies, MDPI, vol. 16(6), pages 1-17, March.
    18. Xi, Lei & Shi, Yu & Quan, Yue & Liu, Zhihong, 2024. "Research on the multi-area cooperative control method for novel power systems," Energy, Elsevier, vol. 313(C).
    19. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    20. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.