IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022303.html
   My bibliography  Save this article

Mutually reinforcing performance of energy harvest and wind environment via wind turbine-solar integrated system over a bridge

Author

Listed:
  • Guo, Peng
  • Zhou, Lei
  • Lu, Haoyang
  • Ning, Xizhan
  • Liu, Tingting
  • Zhang, Hongfu

Abstract

This research proposes a highly efficient wind turbine-solar integrated system specifically for bridges, which cleverly combines Savonius wind turbines and solar panels to systematically enhance the aerodynamic performance of turbines and optimize the wind environment for vehicular traffic. A systematic evaluation using high-fidelity large-eddy simulation assessed power coefficient, flow field characteristics, wind load coefficient, vehicular wind environment, and carbon emissions under a wind velocity of 7 m/s. This evaluation involved exploring different installation configurations, tilt angles of solar panels, and tip speed ratios (TSRs) as variables. Results showed that the integrated system attained the highest power coefficient (Cp = 0.269) when α = 45°and TSR = 1, which was 55.5 % higher than isolated wind turbine (Cp = 0.173) but 11.8 % lower than wind turbine installed on the bridge (Cp = 0.305). The optimal configuration of integrated system reduced annual carbon emissions by up to 3282 kg, which represents an increase of 129.0 % compared to the isolated wind turbine (1,434 kg) and 30.0 % compared to the wind turbine installed on the bridge (2,524 kg). Additionally, the integrated system significantly improved the wind environment of vehicle traffic on the bridge although it slightly increased the wind force coefficient of bridge. This study provides theoretical reference and guidance for improving wind energy utilization on bridges, enhancing wind environment of vehicle traffic, and reducing carbon emissions.

Suggested Citation

  • Guo, Peng & Zhou, Lei & Lu, Haoyang & Ning, Xizhan & Liu, Tingting & Zhang, Hongfu, 2025. "Mutually reinforcing performance of energy harvest and wind environment via wind turbine-solar integrated system over a bridge," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022303
    DOI: 10.1016/j.energy.2025.136588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Giulio Vita & Anina Šarkić-Glumac & Hassan Hemida & Simone Salvadori & Charalampos Baniotopoulos, 2020. "On the Wind Energy Resource above High-Rise Buildings," Energies, MDPI, vol. 13(14), pages 1-23, July.
    2. Magrassi, Fabio & Rocco, Elena & Barberis, Stefano & Gallo, Michela & Del Borghi, Adriana, 2019. "Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach," Renewable Energy, Elsevier, vol. 130(C), pages 290-304.
    3. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    4. Ha, Jong M. & Oh, Hyunseok & Park, Jungho & Youn, Byeng D., 2017. "Classification of operating conditions of wind turbines for a class-wise condition monitoring strategy," Renewable Energy, Elsevier, vol. 103(C), pages 594-605.
    5. Bai, H.L. & Chan, C.M. & Zhu, X.M. & Li, K.M., 2019. "A numerical study on the performance of a Savonius-type vertical-axis wind turbine in a confined long channel," Renewable Energy, Elsevier, vol. 139(C), pages 102-109.
    6. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    7. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    8. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    9. Oebels, Kerstin B. & Pacca, Sergio, 2013. "Life cycle assessment of an onshore wind farm located at the northeastern coast of Brazil," Renewable Energy, Elsevier, vol. 53(C), pages 60-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeremy Lytle & Zenon Radewych & Kristiina Valter Mai & Alan S. Fung, 2025. "A Review and Characterization of Energy-Harvesting Resources in Buildings with a Case Study of a Commercial Building in a Cold Climate—Toronto, Canada," Energies, MDPI, vol. 18(8), pages 1-33, April.
    2. Luca Salvadori & Annalisa Di Bernardino & Giorgio Querzoli & Simone Ferrari, 2021. "A Novel Automatic Method for the Urban Canyon Parametrization Needed by Turbulence Numerical Simulations for Wind Energy Potential Assessment," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    4. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    5. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    6. Adriana Del Borghi & Thomas Spiegelhalter & Luca Moreschi & Michela Gallo, 2021. "Carbon-Neutral-Campus Building: Design Versus Retrofitting of Two University Zero Energy Buildings in Europe and in the United States," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    7. Fan, Shuanglong & Liu, Zhenqing, 2025. "Investigation of fully coupled wind field simulations in complex terrain wind farms considering automatic upwind control of turbines," Renewable Energy, Elsevier, vol. 239(C).
    8. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    9. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    11. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    12. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Krzysztof Kołodziejczyk & Radosław Ptak, 2022. "Numerical Investigations of the Vertical Axis Wind Turbine with Guide Vane," Energies, MDPI, vol. 15(22), pages 1-14, November.
    14. Corneliu Marinescu, 2021. "Design Consideration Regarding a Residential Renewable-Based Microgrid with EV Charging Station Capabilities," Energies, MDPI, vol. 14(16), pages 1-13, August.
    15. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Kim, Sunuk & Oh, Han Jin & Han, Sang Ju & Ko, Han Seo & Shin, Youhwan & Shin, Dong Ho, 2022. "Development of black-ice removal system with latent heat thermal energy storage and solar thermal collectors," Energy, Elsevier, vol. 244(PA).
    17. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    18. Simas, Moana & Pacca, Sergio, 2014. "Assessing employment in renewable energy technologies: A case study for wind power in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 83-90.
    19. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    20. Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.