IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022248.html
   My bibliography  Save this article

A hybrid framework for short-term load forecasting based on optimized InMetra Boost and BiLSTM

Author

Listed:
  • Zhao, Qinghe
  • Wang, Shengduo
  • Chen, Yuqi
  • Liu, Jinlong
  • Sun, Yujia
  • Su, Tong
  • Li, Ningning
  • Fang, Junlong

Abstract

Accurate short-term load forecasting is essential for maintaining stable and efficient power grid operations, especially with the increasing complexity introduced by renewable energy sources. This paper proposes a novel hybrid model for day-ahead Short-Term Load Forecasting, combining an improved Boosting algorithm, InMetra Boost, and a Bidirectional Long Short-Term Memory model. InMetra Boost introduces an asymmetric penalty mechanism, allowing for more precise handling of positive and negative forecast deviations. The model's hyperparameters are optimized using the Tree-structured Parzen Estimator, and the temporal dependencies in load data are further captured by a BiLSTM model, whose architecture is refined via the Cuckoo Search algorithm. The proposed TPE-IMB-CS-BiLSTM (Tree-structured Parzen Estimator optimized InMetra Boost within BiLSTM tuned by Cuckoo Search) framework was evaluated on real-world Estonian grid data, demonstrating superior performance compared to traditional models. Firstly, the TPE-IMB model achieves a significant improvement, reducing MAE from 34.86 MW in the original boosting model to 30.38 MW, and RMSE from 47.79 MW to 40.45 MW. Secondly, the hybrid TPE-IMB-CS-BiLSTM model further enhances accuracy, reducing MAE to 27.77 MW and RMSE to 36.55 MW, significantly outperforming the TPE-IMB and vanilla BiLSTM models. Lastly, compared to other state-of-the-art models, the proposed model achieves the best performance with a 24.66 % reduction in MAE and 26.74 % reduction in RMSE, demonstrating superior robustness in handling complex and extreme data conditions.

Suggested Citation

  • Zhao, Qinghe & Wang, Shengduo & Chen, Yuqi & Liu, Jinlong & Sun, Yujia & Su, Tong & Li, Ningning & Fang, Junlong, 2025. "A hybrid framework for short-term load forecasting based on optimized InMetra Boost and BiLSTM," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022248
    DOI: 10.1016/j.energy.2025.136582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, T. & Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2018. "Load forecasting under changing climatic conditions for the city of Sydney, Australia," Energy, Elsevier, vol. 142(C), pages 911-919.
    2. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    3. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    4. Tao Hong, 2014. "Energy Forecasting: Past, Present, and Future," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 32, pages 43-48, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    2. Azhar Ahmed Mohammed & Zeyar Aung, 2016. "Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation," Energies, MDPI, vol. 9(12), pages 1-17, December.
    3. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    4. Maciejowska, Katarzyna & Nowotarski, Jakub, 2016. "A hybrid model for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1051-1056.
    5. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
    6. Zhang, Yao & Wang, Jianxue, 2016. "K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1074-1080.
    7. Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
    8. Heinonen, Sirkka & Minkkinen, Matti & Karjalainen, Joni & Inayatullah, Sohail, 2017. "Testing transformative energy scenarios through causal layered analysis gaming," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 101-113.
    9. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    10. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    11. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    12. Romain Dupin & Laura Cavalcante & Ricardo J. Bessa & Georges Kariniotakis & Andrea Michiorri, 2020. "Extreme Quantiles Dynamic Line Rating Forecasts and Application on Network Operation," Energies, MDPI, vol. 13(12), pages 1-21, June.
    13. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    14. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    15. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    16. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    17. Dordonnat, V. & Pichavant, A. & Pierrot, A., 2016. "GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1005-1011.
    18. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    19. Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
    20. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.