IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022200.html
   My bibliography  Save this article

Planning energy transition and decarbonisation of district heating systems in Poland

Author

Listed:
  • Kalina, Jacek
  • Tańczuk, Mariusz
  • Jendryasek, Łukasz

Abstract

The revised Energy Efficiency Directive of the European Union sets very ambitious targets for the decarbonisation of existing district heating systems by 2050. This study addresses the issue of decarbonisation planning in the case of large, 2nd generation, fossil fuel-fired district heating systems in Poland. It aims to identify key issues related to the reconfiguration of the system required to satisfy the definition of the efficient district heating system set in the Energy Efficiency Directive for 2028 and 2035. The results reveal the complexity of the task and the critical constraints of the transition strategy. It was found that the implementation of the technically feasible decarbonisation solutions may cause an increase in heat production costs compared to a reference “no action” scenario. It was also identified that the seasonal heat storage volume required to capture heat available out of the heating season may not be possible to establish, and dispatchable waste heat sources must be found to meet the decarbonisation goals. The overall conclusion is that to facilitate informed investment decisions reduce risks and meet the energy transition targets in a cost-effective way, a comprehensive holistic strategic plans needs to be developed that take into account several areas of interventions, namely technological, infrastructural, economic (including legal, market and business) and social.

Suggested Citation

  • Kalina, Jacek & Tańczuk, Mariusz & Jendryasek, Łukasz, 2025. "Planning energy transition and decarbonisation of district heating systems in Poland," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022200
    DOI: 10.1016/j.energy.2025.136578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Stock, Jan & Schmidt, Till & Xhonneux, André & Müller, Dirk, 2024. "Optimisation of district heating transformation for the efficient integration of a low-temperature heat source," Energy, Elsevier, vol. 308(C).
    3. Johansen, Katinka & Werner, Sven, 2022. "Something is sustainable in the state of Denmark: A review of the Danish district heating sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Pakere, Ieva & Feofilovs, Maksims & Lepiksaar, Kertu & Vītoliņš, Valdis & Blumberga, Dagnija, 2023. "Multi-source district heating system full decarbonization strategies: Technical, economic, and environmental assessment," Energy, Elsevier, vol. 285(C).
    5. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    6. Kalina, Jacek, 2023. "The quest for game changers - Review of new trends and innovations in the design of large-scale energy systems," Energy, Elsevier, vol. 277(C).
    7. Wang, Tianyi & Ma, Minda & Zhou, Nan & Ma, Zhili, 2025. "Toward net zero: Assessing the decarbonization impact of global commercial building electrification," Applied Energy, Elsevier, vol. 383(C).
    8. Ziemele, Jelena & Dace, Elina, 2022. "An analytical framework for assessing the integration of the waste heat into a district heating system: Case of the city of Riga," Energy, Elsevier, vol. 254(PB).
    9. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalina, Jacek & Pohl, Wiktoria, 2024. "Technical and economic analysis of a multicarrier building energy hub concept with heating loads at different temperature levels," Energy, Elsevier, vol. 288(C).
    2. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    3. Ali, Hesham & Hlebnikov, Aleksandr & Pakere, Ieva & Volkova, Anna, 2024. "An evaluation and innovative coupling of seawater heat pumps in district heating networks," Energy, Elsevier, vol. 312(C).
    4. Vilén, Karl & Lygnerud, Kristina & Ahlgren, Erik O., 2024. "Policy implications of challenges and opportunities for district heating – The case for a Nordic heating system," Energy, Elsevier, vol. 308(C).
    5. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol, 2025. "Grid impact of photovoltaics, electric vehicles and heat pumps on distribution grids — An overview," Applied Energy, Elsevier, vol. 380(C).
    6. Ziemele, Jelena & Volkova, Anna & Latõšov, Eduard & Murauskaitė, Lina & Džiuvė, Vytautas, 2023. "Comparative assessment of heat recovery from treated wastewater in the district heating systems of the three capitals of the Baltic countries," Energy, Elsevier, vol. 280(C).
    7. Young-Jik Youn & Yong-Hoon Im, 2022. "Technical Feasibility Assessment for a Novel Fifth-Generation District Heating Model of Interconnected Operation with a Large-Scale Building," Sustainability, MDPI, vol. 14(19), pages 1-30, October.
    8. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    9. Johansen, K. & Upham, P.J., 2025. "Should end-users take their clothes off inside on a cold winter's day? Sustainability pressures on district heating professionals in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    10. Johansen, Katinka & Johra, Hicham, 2022. "A niche technique overlooked in the Danish district heating sector? Exploring socio-technical perspectives of short-term thermal energy storage for building energy flexibility," Energy, Elsevier, vol. 256(C).
    11. Malcher, Xenia & Tenorio-Rodriguez, Francis Catherine & Finkbeiner, Matthias & Gonzalez-Salazar, Miguel, 2025. "Decarbonization of district heating: A systematic review of carbon footprint and key mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    12. Ayou, Dereje S. & Wardhana, Muhammad Fa'iq Vidi & Coronas, Alberto, 2023. "Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates," Energy, Elsevier, vol. 268(C).
    13. Ramos-Teodoro, Jerónimo & Álvarez, José Domingo & Torres, José Luis, 2024. "A methodology for feasibility analyses of district heating networks: A case study applied to greenhouse crops," Energy, Elsevier, vol. 301(C).
    14. Zajacs, Aleksandrs & Shogenova, Alla & Shogenov, Kazbulat & Volkova, Anna & Sliaupa, Saulius & Sliaupiene, Rasa & Jõeleht, Argo, 2025. "Utilization of geothermal energy: New possibilities for district heating networks in the Baltic states," Renewable Energy, Elsevier, vol. 242(C).
    15. Yang, Xiaolin & Kong, Ying & Zhou, Yu & Liu, Dawei & Xia, Jianjun, 2024. "Case study on combined heat and water system for district heating in Beijing through recovery of industrial waste heat in Tangshan," Energy, Elsevier, vol. 300(C).
    16. Munćan, Vladimir & Mujan, Igor & Macura, Dušan & Anđelković, Aleksandar S., 2024. "The state of district heating and cooling in Europe - A literature-based assessment," Energy, Elsevier, vol. 304(C).
    17. Guanghua Zheng & Yifan He & Zhaohan Lu & Yuping Wu, 2025. "Research on Spatial and Temporal Divergence and Influencing Factors of the Coal Industry Transformation and Development Under Energy Security and Dual-Carbon Target," Sustainability, MDPI, vol. 17(6), pages 1-28, March.
    18. Martin, Nick & Zinck Thellufsen, Jakob & Chang, Miguel & Talens-Peiró, Laura & Madrid-López, Cristina, 2024. "The many faces of heating transitions. Deeper understandings of future systems in Sweden and beyond," Energy, Elsevier, vol. 290(C).
    19. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    20. Nielsen, Frederik Dahl & Skov, Iva Ridjan & Sorknæs, Peter, 2025. "Feasibility of integrating excess heat from power-to-methanol: Case study of a Danish district heating network," Applied Energy, Elsevier, vol. 386(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.