IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021838.html
   My bibliography  Save this article

Techno-economic assessment and optimized performance of a multi-generation setup composed of a wind turbine and a compressed air energy storage system

Author

Listed:
  • Liu, Shulong
  • Huang, Xuechen
  • Feng, Dulong
  • Zhang, Jinfeng
  • Gao, Chao
  • Wan, Qian

Abstract

Integrating a wind turbine with a compressed air energy storage (CAES) system offers a viable solution for reducing the impact of fluctuations in wind availability and enhancing the reliability and efficiency of renewable energy generation. This combination enables better integration of wind power into the energy grid and supports the transition towards a more sustainable energy future. The system proposed in the study is designed for multi-generation purposes, making it a novel combination of a wind turbine and a CAES system. The CAES system is integrated with two modified Kalina cycles (MKCs), a hot water production unit (HWPU), an air turbine, and an absorption chiller (ACH) for the utmost waste heat recovery of the CAES system. The heat wasted by the generator of the wind turbine is also recuperated through a trilateral cycle (TLC). Hydrogen and freshwater are produced by the configuration using an alkaline electrolyzer and a reverse osmosis desalination system (RODS). The techno-economic optimization conducted in the study indicated an exergy round-trip efficiency (ERTE) of 42.44 % for the proposed setup, which is 14.7 % higher than that of a similar multi-generation layout proposed previously. The power consumption of the CAES system amounts to 1167 kW, whereas the proposed setup generates energy at a rate equivalent to 2057 kW. The system could reduce CO2 emissions by 7058 Tonyear−1 and 4965 Tonyear−1 in the cases of implementation in China and the USA, correspondingly. Moreover, the share of the wind turbine in the total exergy destruction and investment cost rate is 85 % and 76 %, respectively.

Suggested Citation

  • Liu, Shulong & Huang, Xuechen & Feng, Dulong & Zhang, Jinfeng & Gao, Chao & Wan, Qian, 2025. "Techno-economic assessment and optimized performance of a multi-generation setup composed of a wind turbine and a compressed air energy storage system," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021838
    DOI: 10.1016/j.energy.2025.136541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & Hassan, Hamdy, 2022. "Renewable energy-based cascade adsorption-compression refrigeration system: Energy, exergy, exergoeconomic and enviroeconomic perspectives," Energy, Elsevier, vol. 253(C).
    2. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
    3. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    4. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    5. Cheng, Biyi & Yao, Yingxue & Qu, Xiaobin & Zhou, Zhiming & Wei, Jionghui & Liang, Ertang & Zhang, Chengcheng & Kang, Hanwen & Wang, Hongjun, 2024. "Multi-objective parameter optimization of large-scale offshore wind Turbine's tower based on data-driven model with deep learning and machine learning methods," Energy, Elsevier, vol. 305(C).
    6. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    7. V. Srinivasan & Allan Shocker, 1973. "Linear programming techniques for multidimensional analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 38(3), pages 337-369, September.
    8. Shahsavari, Ardavan & Vaziri Rad, Mohammad Amin & Pourfayaz, Fathollah & Kasaeian, Alibakhsh, 2022. "Optimal sizing of an integrated CHP and desalination system as a polygeneration plant for supplying rural demands," Energy, Elsevier, vol. 258(C).
    9. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    10. Alirahmi, Seyed Mojtaba & Gundersen, Truls & Arabkoohsar, Ahmad & Klemeš, Jiří Jaromír & Sin, Gürkan & Yu, Haoshui, 2024. "Process design, integration, and optimization of a novel compressed air energy storage for the coproduction of electricity, cooling, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    12. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).
    13. Esmaeilion, Farbod & Soltani, M. & Nathwani, Jatin & Al-Haq, Armughan & Dusseault, M.B. & Rosen, Marc A., 2024. "Exergoeconomic assessment of a high-efficiency compressed air energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    14. Alirahmi, Seyed Mojtaba & Razmi, Amir Reza & Arabkoohsar, Ahmad, 2021. "Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Hao & Li, Ruiheng & Di, Yi & Guo, Jia & Shi, Binghua & Zuo, Qiankun, 2025. "A biomass gasifier-fueled externally fired air turbine cycle combined with a solar compressed air energy storage system for multi-product outputs: Exergy-economic-environmental analysis and multi-aspe," Energy, Elsevier, vol. 314(C).
    2. Qi, Ji & Liu, Zhiyong & Zhao, Yuhai & Yin, Huimin & Zhu, Fengwu, 2024. "Optimizing compressed air energy storage with organic Rankine cycle and ejector refrigeration for sustainable power and cooling provision," Energy, Elsevier, vol. 308(C).
    3. Liu, Shulong & Huang, Xuechen & Zhang, Jinfeng & Gao, Chao & Wan, Qian & Feng, Dulong, 2024. "Multi-criteria optimization next to a comparative analysis of a polygeneration layout based on a double-stage gas turbine cycle fueled by biomass and hydrogen," Renewable Energy, Elsevier, vol. 237(PB).
    4. Zoghi, Mohammad & Hosseinzadeh, Nasser & Gharaie, Saleh & Zare, Ali, 2025. "4E comprehensive comparison and optimization of different renewable power sources for green hydrogen production," Renewable Energy, Elsevier, vol. 240(C).
    5. Yu, Siming & Chen, Rui & Zhao, Zhilong & Wei, Fang, 2025. "Multi-aspect evaluation and optimization of a tri-generation scheme integrating a geothermal power plant with a salinity-gradient solar pond," Energy, Elsevier, vol. 320(C).
    6. Zhou, Wei & Lin, Yaoting, 2025. "Optimization and 4E analysis of a hybrid solar-methane system for hydrogen and freshwater production with enhanced waste heat recovery from a compressed air energy storage system," Energy, Elsevier, vol. 320(C).
    7. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    8. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2022. "Exergoeconomic analysis and optimization of a solar energy-based integrated system with oxy-combustion for combined power cycle and carbon capturing," Energy, Elsevier, vol. 250(C).
    9. Liao, Jixiang & Liu, Xingye & Pang, Yunfeng, 2024. "Economic and technical optimization of a tri-generation setup integrating a partial evaporation Rankine cycle with an ejector-based refrigeration system using different solar collectors," Renewable Energy, Elsevier, vol. 236(C).
    10. Xiao, Yan & You, Huailiang & Chen, Daifen & Yuan, Ye & Hu, Bin & Li, Guoxiang & Han, Jitian, 2025. "Exergy, exergoeconomic, and exergoenvironmental analyses of a combined cooling, heating, power, and freshwater poly-generation system driven by methane-fueled solid oxide fuel cell," Energy, Elsevier, vol. 314(C).
    11. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
    12. Chen, Longxiang & Zhang, Liugan & Guo, Weikang & Lian, Hui & Wang, Yongwei & Ye, Kai & Xie, Meina, 2024. "Dynamic analysis of an adiabatic compressed air energy storage system with temperature-regulated in air tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    13. Zhang, Liugan & Xie, Meina & Su, Chunlei & Ye, Kai & Li, Shizhu & Chen, Long xiang, 2024. "Experimental analysis and cost assessment of a novel variable-volume air storage device designed for compressed air energy storage," Energy, Elsevier, vol. 313(C).
    14. Ran, Peng & Fan, Qinyang & Ou, YiFan & Zhang, Chunyu, 2025. "Energy, conventional exergy, advanced exergy and economic analysis of a steam injection compressed air energy storage integrated with concentrating solar power," Energy, Elsevier, vol. 323(C).
    15. Wang, Dan & Jasim, Dheyaa J. & Zoghi, Mohammad & Habibi, Hamed, 2024. "Optimized multi-criteria performance of a poly-generation layout including a Stirling engine and a supercritical Brayton cycle using biogas and methane as two potential fuels of a topping gas turbine ," Energy, Elsevier, vol. 310(C).
    16. Forootan, Mohammad Mahdi & Ahmadi, Abolfazl, 2024. "Machine learning-based optimization and 4E analysis of renewable-based polygeneration system by integration of GT-SRC-ORC-SOFC-PEME-MED-RO using multi-objective grey wolf optimization algorithm and ne," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    17. Zhou, Yufei & Zhang, Hanfei & Liu, Shuo & Lu, Ziyi & Ding, Xingqi & Duan, Liqiang & Desideri, Umberto, 2024. "Experimental study on heat transfer characteristics between high-pressure air and molten salt used in solar-aided compressed air energy storage systems," Energy, Elsevier, vol. 313(C).
    18. Wang, Yongfeng & Li, Shuguang & Bu sinnah, Zainab Ali & Ghandour, Raymond & Khan, Mohammad Nadeem & Ali, H. Elhosiny, 2024. "Optimizing energy efficiency and emission reduction: Leveraging the power of machine learning in an integrated compressed air energy storage-solid oxide fuel cell system," Energy, Elsevier, vol. 313(C).
    19. Hu, Shuozhuo & Yang, Zhen & Li, Jian & Duan, Yuanyuan, 2022. "Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation," Renewable Energy, Elsevier, vol. 186(C), pages 628-645.
    20. Yin, Pei & Sardari, Farshid, 2023. "Process arrangement and multi-criteria study/optimization of a novel hybrid solar-geothermal scheme combined with a compressed air energy storage: Application of different MOPSO-based scenarios," Energy, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.