IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics036054422500636x.html
   My bibliography  Save this article

Optimization and 4E analysis of a hybrid solar-methane system for hydrogen and freshwater production with enhanced waste heat recovery from a compressed air energy storage system

Author

Listed:
  • Zhou, Wei
  • Lin, Yaoting

Abstract

Compressed air energy storage (CAES) systems based on the gas turbine cycle produce significant waste energy during charging and discharging, which has not been effectively utilized in multi-generation systems. This study proposes a novel system that recovers waste heat during the charging period using two trans-critical CO2 Rankine cycles coupled with a reverse osmosis desalination system, and during the discharge period using a domestic hot water heat exchanger, an absorption chiller, a proton exchange membrane electrolyzer, and a steam Rankine cycle (SRC). The system is powered by hybrid energy sources—a solar power tower and a methane-based combustion chamber—to overcome the limitations of each energy source when used individually. Comprehensive energy, exergy, exergy-economic, and environmental analyses are conducted, with parametric studies examining key factors such as high pressures and temperatures in the CAES system and the heat recovery steam generator temperature in the SRC. Multi-objective optimization, performed by linking EES software with MATLAB and employing artificial neural networks (ANNs) to reduce computational time, reveals an exergy round trip efficiency of 37.8 % and a unit cost of 128.65 $/GJ. ANNs, trained with about 2000 randomly generated data points, enable accurate and efficient predictions of system performance, ensuring a robust design process.

Suggested Citation

  • Zhou, Wei & Lin, Yaoting, 2025. "Optimization and 4E analysis of a hybrid solar-methane system for hydrogen and freshwater production with enhanced waste heat recovery from a compressed air energy storage system," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500636x
    DOI: 10.1016/j.energy.2025.134994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500636X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
    2. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    3. Elsakka, Mohamed Mohamed & Refaat, Ahmed & Alzahrani, Khalid M. & Hee, Jee Loong & Ma, Lin & Elhenawy, Yasser & Majozi, Thokozani & Yosry, Ahmed Gharib & Amer, Ahmed & Moustafa, Gamal Hafez & Ahmed, A, 2024. "Techno-economic assessment of a novel wind-powered RO system with a compressed air energy storage for water desalination," Energy, Elsevier, vol. 311(C).
    4. Nafey, A.S. & Sharaf, M.A., 2010. "Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations," Renewable Energy, Elsevier, vol. 35(11), pages 2571-2580.
    5. Habibi, Hamed & Chitsaz, Ata & Javaherdeh, Koroush & Zoghi, Mohammad & Ayazpour, Mojtaba, 2018. "Thermo-economic analysis and optimization of a solar-driven ammonia-water regenerative Rankine cycle and LNG cold energy," Energy, Elsevier, vol. 149(C), pages 147-160.
    6. Wang, Xurong & Dai, Yiping, 2016. "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study," Applied Energy, Elsevier, vol. 170(C), pages 193-207.
    7. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    8. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    9. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    10. Wang, Peizi & Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2020. "Performance evaluation of a combined heat and compressed air energy storage system integrated with ORC for scaling up storage capacity purpose," Energy, Elsevier, vol. 190(C).
    11. Alirahmi, Seyed Mojtaba & Razmi, Amir Reza & Arabkoohsar, Ahmad, 2021. "Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    12. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    13. Takleh, H. Rostamnejad & Zare, V. & Mohammadkhani, F., 2025. "Exergy/cost-based optimization of a hybrid plant including CAES system, heliostat solar field, and biomass-fired gas turbine cycle," Energy, Elsevier, vol. 318(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abouzied, Amr S. & Farouk, Naeim & Shaban, Mohamed & Abed, Azher M. & Alhomayani, Fahad M. & Formanova, Shoira & Khan, Mohammad Nadeem & Alturise, Fahad & Alkhalaf, Salem & Albalawi, Hind, 2025. "Optimization of Ex/energy efficiencies in an integrated compressed air energy storage system (CAES) using machine learning algorithms: A multi-objective approach based on analysis of variance," Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Hao & Li, Ruiheng & Di, Yi & Guo, Jia & Shi, Binghua & Zuo, Qiankun, 2025. "A biomass gasifier-fueled externally fired air turbine cycle combined with a solar compressed air energy storage system for multi-product outputs: Exergy-economic-environmental analysis and multi-aspe," Energy, Elsevier, vol. 314(C).
    2. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
    3. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    4. Liao, Jixiang & Liu, Xingye & Pang, Yunfeng, 2024. "Economic and technical optimization of a tri-generation setup integrating a partial evaporation Rankine cycle with an ejector-based refrigeration system using different solar collectors," Renewable Energy, Elsevier, vol. 236(C).
    5. Yu, Siming & Chen, Rui & Zhao, Zhilong & Wei, Fang, 2025. "Multi-aspect evaluation and optimization of a tri-generation scheme integrating a geothermal power plant with a salinity-gradient solar pond," Energy, Elsevier, vol. 320(C).
    6. Ran, Peng & Fan, Qinyang & Ou, YiFan & Zhang, Chunyu, 2025. "Energy, conventional exergy, advanced exergy and economic analysis of a steam injection compressed air energy storage integrated with concentrating solar power," Energy, Elsevier, vol. 323(C).
    7. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    8. Khaljani, M. & Saray, R. Khoshbakhti & Bahlouli, K., 2016. "Evaluation of a combined cycle based on an HCCI (Homogenous Charge Compression Ignition) engine heat recovery employing two organic Rankine cycles," Energy, Elsevier, vol. 107(C), pages 748-760.
    9. Qi, Ji & Liu, Zhiyong & Zhao, Yuhai & Yin, Huimin & Zhu, Fengwu, 2024. "Optimizing compressed air energy storage with organic Rankine cycle and ejector refrigeration for sustainable power and cooling provision," Energy, Elsevier, vol. 308(C).
    10. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    11. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    12. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    13. Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
    14. Liang, Wenxing & Yu, Zeting & Bian, Feiyu & Wu, Haonan & Zhang, Kaifan & Ji, Shaobo & Cui, Bo, 2023. "Techno-economic-environmental analysis and optimization of biomass-based SOFC poly-generation system," Energy, Elsevier, vol. 285(C).
    15. Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
    16. Zare, A. Darabadi & Saray, R. Khoshbakhti & Mirmasoumi, S. & Bahlouli, K., 2019. "Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle," Energy, Elsevier, vol. 181(C), pages 635-644.
    17. Qing, Shaowei & Ren, Shangkun & Wang, Yan & Wen, Xiankui & Zhong, Jingliang & Tang, Shengli & Peng, E., 2024. "Compressed air energy storage system with an ejector integrated in energy-release stage: Where is the optimal location of constant-pressure operation?," Applied Energy, Elsevier, vol. 375(C).
    18. Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).
    19. Liu, Shulong & Huang, Xuechen & Zhang, Jinfeng & Gao, Chao & Wan, Qian & Feng, Dulong, 2024. "Multi-criteria optimization next to a comparative analysis of a polygeneration layout based on a double-stage gas turbine cycle fueled by biomass and hydrogen," Renewable Energy, Elsevier, vol. 237(PB).
    20. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s036054422500636x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.