IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021826.html
   My bibliography  Save this article

Thermodynamic analysis of a copper-based chemical looping combustion system with integrated energy storage for combined cooling, heating, and power

Author

Listed:
  • Du, Yadong
  • Yang, Ce
  • Wang, Haimei
  • Zhang, Hanzhi
  • Zhao, Ben
  • Chen, Weidong
  • Ernest Chua, Kian Jon

Abstract

In this study, a novel combined cooling, heating, and power (CCHP) system integrating a copper-based chemical looping combustion-driven Brayton cycle, a liquid natural gas (LNG) regasification unit, and a compressed carbon dioxide energy storage (CCES) is introduced. Through the development of a thermodynamic model, the system's performance benefits and exergy flow distribution are explained, followed by a detailed parametric analysis. The results indicate that the proposed system's round-trip efficiency, energy storage density, and discharge time surpass those of the standalone CCES unit by factors of 1.59, 17.63, and 3.25, respectively. The system achieves a thermal efficiency of 72.34 % and an exergy efficiency of 40.54 %, accompanied by concurrent changes in the cooling and heating power with the electrical output. Exergy analysis identifies the reactors as the primary contributor to exergy loss, followed by the heat exchanger1 during charge and the condenser during discharge. The parameter analysis reveals that all the considered parameters during discharge rationally regulate the heating and cooling power while modulating the electric power, whereas the compressor inlet parameters during charge can realize a reasonable power regulation only in a collaborative way. Meanwhile, each collaborative parameter demonstrates a maximum threshold value, characterized by a well-fitted dimensionless equation.

Suggested Citation

  • Du, Yadong & Yang, Ce & Wang, Haimei & Zhang, Hanzhi & Zhao, Ben & Chen, Weidong & Ernest Chua, Kian Jon, 2025. "Thermodynamic analysis of a copper-based chemical looping combustion system with integrated energy storage for combined cooling, heating, and power," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021826
    DOI: 10.1016/j.energy.2025.136540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Kevin Baumert & Odile Blanchard & S. Llosa & James F. Perkaus, 2002. "Building on the Kyoto Protocol : options for protecting the climate," Post-Print halshs-00196316, HAL.
    3. Du, Yadong & Yang, Ce & Zhao, Ben & Hu, Chenxing & Zhang, Hanzhi & Yu, Zhiyi & Gao, Jianbing & Zhao, Wei & Wang, Haimei, 2023. "Optimal design of a supercritical carbon dioxide recompression cycle using deep neural network and data mining techniques," Energy, Elsevier, vol. 271(C).
    4. Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    5. Tan, Liping & Cai, Lei & Fu, Yidan & Zhou, Zining & Guan, Yanwen, 2023. "Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system," Renewable Energy, Elsevier, vol. 208(C), pages 94-104.
    6. Du, Yadong & Yu, Zhiyi & Sun, Weihua & Yang, Ce & Wang, Haimei & Zhang, Hanzhi, 2024. "Chemical looping combustion-driven cooling and power cogeneration system with LNG cold energy utilization: Exergoeconomic analysis and three-objective optimization," Energy, Elsevier, vol. 295(C).
    7. Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
    8. Ehsan, M. Monjurul & Awais, Muhammad & Lee, Sangkyoung & Salehin, Sayedus & Guan, Zhiqiang & Gurgenci, Hal, 2023. "Potential prospects of supercritical CO2 power cycles for commercialisation: Applicability, research status, and advancement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Yadong & Yu, Zhiyi & Sun, Weihua & Yang, Ce & Wang, Haimei & Zhang, Hanzhi, 2024. "Chemical looping combustion-driven cooling and power cogeneration system with LNG cold energy utilization: Exergoeconomic analysis and three-objective optimization," Energy, Elsevier, vol. 295(C).
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Tafone, Alessio & Borri, Emiliano & Cabeza, Luisa F. & Romagnoli, Alessandro, 2021. "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit," Applied Energy, Elsevier, vol. 301(C).
    4. Barbara Buchner & Carlo Carraro, 2004. "Economic and environmental effectiveness of a technology-based climate protocol," Climate Policy, Taylor & Francis Journals, vol. 4(3), pages 229-248, September.
    5. Winkler, Harald & Baumert, Kevin & Blanchard, Odile & Burch, Sarah & Robinson, John, 2007. "What factors influence mitigative capacity?," Energy Policy, Elsevier, vol. 35(1), pages 692-703, January.
    6. Fan, Xiaoyu & Xu, Hao & Li, Yihong & Li, Junxian & Wang, Zhikang & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration," Applied Energy, Elsevier, vol. 371(C).
    7. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    8. Kang, Kai & Su, Yifan & Yang, Peng & Wang, Zhaojian & Liu, Feng, 2025. "Securing long-term dispatch of isolated microgrids with high-penetration renewable generation: A controlled evolution-based framework," Applied Energy, Elsevier, vol. 381(C).
    9. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    10. Onno Kuik & Jeroen Aerts & Frans Berkhout & Frank Biermann & Jos Bruggink & Joyeeta Gupta & Richard S.J. Tol, 2008. "Post-2012 climate policy dilemmas: a review of proposals," Climate Policy, Taylor & Francis Journals, vol. 8(3), pages 317-336, May.
    11. Tsikalakis, A.G. & Hatziargyriou, N.D., 2007. "Environmental benefits of distributed generation with and without emissions trading," Energy Policy, Elsevier, vol. 35(6), pages 3395-3409, June.
    12. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    13. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    14. Mirzaei, Mohammad Reza & Kasaeian, Alibakhsh & Sadeghi Motlagh, Maryam & Fereidoni, Sahar, 2024. "Thermo-economic analysis of an integrated combined heating, cooling, and power unit with dish collector and organic Rankine cycle," Energy, Elsevier, vol. 296(C).
    15. Lu, Yupeng & Xuan, Yimin & Teng, Liang & Liu, Jingrui & Wang, Busheng, 2024. "A cascaded thermochemical energy storage system enabling performance enhancement of concentrated solar power plants," Energy, Elsevier, vol. 288(C).
    16. Evangeline, S. Ida & Darwin, S., 2025. "The role of carbon dioxide in enhancing geothermal energy: A review of current developments and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    17. Sterk, Wolfgang & Arens, Christof & Beuermann, Christiane & Bongardt, Daniel & Borbonus, Sylvia & Dienst, Carmen & Eichhorst, Urda & Kiyar, Dagmar & Luhmann, Hans-Jochen & Ott, Hermann E. & Rudolph, F, 2009. "Towards an effective and equitable climate change agreement: A Wuppertal proposal for Copenhagen," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 40, number 40.
    18. Laura Silvia Valente Macedo & Pedro Roberto Jacobi, 2019. "Subnational politics of the urban age: evidence from Brazil on integrating global climate goals in the municipal agenda," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    19. Hsieh, Tien-Lin & Xu, Dikai & Zhang, Yitao & Nadgouda, Sourabh & Wang, Dawei & Chung, Cheng & Pottimurphy, Yaswanth & Guo, Mengqing & Chen, Yu-Yen & Xu, Mingyuan & He, Pengfei & Fan, Liang-Shih & Tong, 2018. "250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture," Applied Energy, Elsevier, vol. 230(C), pages 1660-1672.
    20. Massimo Tavoni & Shoibal Chakravarty & Robert Socolow, 2012. "Safe vs. Fair: A Formidable Trade-off in Tackling Climate Change," Sustainability, MDPI, vol. 4(2), pages 1-17, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.