IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225020171.html
   My bibliography  Save this article

Few-shot wind power prediction using sample transfer and imbalanced evolved neural network

Author

Listed:
  • Yin, Hao
  • Li, Chen
  • Chen, Shuxuan
  • Meng, Anbo

Abstract

Accurate wind power prediction for newly built wind farms (NWFs) with limited historical data remains a significant challenge. To address this, we propose SDM-VMD-IENN, a novel framework integrating Similar Data Matching (SDM), Variational Mode Decomposition (VMD), and an Imbalanced Evolved Neural Network (IENN). This model uniquely combines data enhancement and evolutionary optimization to overcome the limitations of existing methods, including negative transfer effects in transfer learning models, data redundancy, and local convergence. Specifically, SDM mitigates negative transfer by filtering highly similar source domain data and constructing Gram matrix-based feature representations, enabling precise selection of high-similarity samples from the source domain. VMD decomposes non-stationary wind power sequences into stable subcomponents, reducing the nonlinear complexity of temporal features. IENN balances sample distribution discrepancies through evolutionary multi-loss optimization and adaptive weighting strategies based on distribution similarity, achieving global convergence. Experiments on real-world wind farms demonstrate that the proposed model exhibits higher prediction accuracy and enhanced robustness compared to classical models and other evolutionary frameworks, particularly under data scarcity scenarios. In our single-step and multi-step prediction tasks, SDM-VMD-IENN consistently outperforms traditional deep learning and evolutionary models. It effectively lowers RMSE and MAE. It is worth noting that in multiple experiments in case three, the SDM-VMD-IENN has a model that is superior to the single loss function. It highlights its strong generalization ability and applicability to data-scarce wind power prediction scenarios.

Suggested Citation

  • Yin, Hao & Li, Chen & Chen, Shuxuan & Meng, Anbo, 2025. "Few-shot wind power prediction using sample transfer and imbalanced evolved neural network," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225020171
    DOI: 10.1016/j.energy.2025.136375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225020171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225020171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.