IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics036054422501998x.html
   My bibliography  Save this article

A novel deep learning approach for regional high-resolution spatio-temporal wind speed forecasting for energy applications

Author

Listed:
  • Resifi, Sofien
  • Aawar, Elissar Al
  • Dasari, Hari Prasad
  • Jebari, Hatem
  • Hoteit, Ibrahim

Abstract

Accurate spatio-temporal wind speed forecasting is crucial for optimizing wind energy production. Traditional forecasting relies on numerical weather prediction (NWP) models, which are computationally intensive, especially when implemented on large high-resolution grids. Recently, Deep Learning (DL) has emerged as an efficient alternative, utilizing historical data to learn patterns and predict future conditions. This work develops a regional DL-based forecasting system that reduces the computational burden of physical models, by using a long-term reanalysis dataset for the Arabian Peninsula (AP). The system forecasts hourly wind speed at 5 km spatial resolution up to 48 h ahead. We focus on vertical levels, corresponding to the hub heights of wind turbines for energy production. We explore two approaches: recursive forecasting, which advances the system’s state at a fine scale over time, and downscaling, which refines coarse-resolution forecasts into high-resolution counterparts. Furthermore, we propose merging both approaches by combining the propagation of spatio-temporal dynamics at fine-scale with coarse-scale predictions. The performance of the frameworks was evaluated qualitatively and quantitatively. Results show that the recursive approach accumulates errors over time steps, whereas the downscaling approach effectively generates high-resolution forecasts. Combining both approaches resulted in a more robust framework, demonstrating notably improved performance and stabilized error evolution.

Suggested Citation

  • Resifi, Sofien & Aawar, Elissar Al & Dasari, Hari Prasad & Jebari, Hatem & Hoteit, Ibrahim, 2025. "A novel deep learning approach for regional high-resolution spatio-temporal wind speed forecasting for energy applications," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s036054422501998x
    DOI: 10.1016/j.energy.2025.136356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422501998X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. He, Jinhua & Hu, Zechun & Wang, Songpo & Mujeeb, Asad & Yang, Pengwei, 2024. "Windformer: A novel 4D high-resolution system for multi-step wind speed vector forecasting based on temporal shifted window multi-head self-attention," Energy, Elsevier, vol. 310(C).
    2. Pan, Xiaoxin & Wang, Long & Wang, Zhongju & Huang, Chao, 2022. "Short-term wind speed forecasting based on spatial-temporal graph transformer networks," Energy, Elsevier, vol. 253(C).
    3. Bentsen, Lars Ødegaard & Warakagoda, Narada Dilp & Stenbro, Roy & Engelstad, Paal, 2023. "Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures," Applied Energy, Elsevier, vol. 333(C).
    4. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
    5. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    6. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    7. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    8. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    9. Lagomarsino-Oneto, Daniele & Meanti, Giacomo & Pagliana, Nicolò & Verri, Alessandro & Mazzino, Andrea & Rosasco, Lorenzo & Seminara, Agnese, 2023. "Physics informed machine learning for wind speed prediction," Energy, Elsevier, vol. 268(C).
    10. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Author Correction: Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 621(7980), pages 45-45, September.
    11. Hu, Qinghua & Zhang, Rujia & Zhou, Yucan, 2016. "Transfer learning for short-term wind speed prediction with deep neural networks," Renewable Energy, Elsevier, vol. 85(C), pages 83-95.
    12. Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
    13. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    14. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verdone, Alessio & Panella, Massimo & De Santis, Enrico & Rizzi, Antonello, 2025. "A review of solar and wind energy forecasting: From single-site to multi-site paradigm," Applied Energy, Elsevier, vol. 392(C).
    2. Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
    3. Wu, Xinning & Zhan, Haolin & Hu, Jianming & Wang, Ying, 2025. "Non-stationary GNNCrossformer: Transformer with graph information for non-stationary multivariate Spatio-Temporal wind power data forecasting," Applied Energy, Elsevier, vol. 377(PB).
    4. He, Jinhua & Hu, Zechun & Wang, Songpo & Mujeeb, Asad & Yang, Pengwei, 2024. "Windformer: A novel 4D high-resolution system for multi-step wind speed vector forecasting based on temporal shifted window multi-head self-attention," Energy, Elsevier, vol. 310(C).
    5. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    6. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    7. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    8. Song Chen & Jiaxu Liu & Pengkai Wang & Chao Xu & Shengze Cai & Jian Chu, 2024. "Accelerated optimization in deep learning with a proportional-integral-derivative controller," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Xing, Qianyi & Huang, Xiaojia & Wang, Kang & Wang, Jianzhou & Wang, Shuai, 2025. "MIG-EWPFS: An ensemble probabilistic wind speed forecasting system integrating multi-dimensional feature extraction, hybrid quantile regression, and Knee improved multi-objective optimization," Energy, Elsevier, vol. 324(C).
    10. Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    11. Huaisheng Tu & Haotian Liu & Tuqiang Pan & Wuping Xie & Zihao Ma & Fan Zhang & Pengbai Xu & Leiming Wu & Ou Xu & Yi Xu & Yuwen Qin, 2025. "Deep empirical neural network for optical phase retrieval over a scattering medium," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    13. Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
    15. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    16. Yingzhe Cui & Ruohan Wu & Xiang Zhang & Ziqi Zhu & Bo Liu & Jun Shi & Junshi Chen & Hailong Liu & Shenghui Zhou & Liang Su & Zhao Jing & Hong An & Lixin Wu, 2025. "Forecasting the eddying ocean with a deep neural network," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
    18. Khan, Taimoor & Choi, Chang, 2025. "Attention enhanced dual stream network with advanced feature selection for power forecasting," Applied Energy, Elsevier, vol. 377(PC).
    19. Valliyil Mohammed Aboobacker & Puthuveetil Razak Shanas & Subramanian Veerasingam & Ebrahim M. A. S. Al-Ansari & Fadhil N. Sadooni & Ponnumony Vethamony, 2021. "Long-Term Assessment of Onshore and Offshore Wind Energy Potentials of Qatar," Energies, MDPI, vol. 14(4), pages 1-21, February.
    20. Zhou, Zhen & Gu, Ziyuan & Qu, Xiaobo & Liu, Pan & Liu, Zhiyuan & Yu, Wenwu, 2024. "Urban mobility foundation model: A literature review and hierarchical perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s036054422501998x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.