IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v327y2025ics0360544225019760.html
   My bibliography  Save this article

Efficient Polynomial PID controller and nonlinear autoregressive with Exogenous for increasing the Efficiency of Combined Gas Turbine (CGT) Plant

Author

Listed:
  • Surase, Ravindra S.
  • Ramakrishna, Konijeti
  • Ramchandra P., Chopade

Abstract

The Combined Gas Turbine (CGT) extracts energy from natural gas, producing electricity with higher thermal efficiency and operational flexibility. However, attaining better thermal efficiency faces issues with factors like pressure drop, component efficiency NOx emission, and fuel conditions. To analyze these factors effectively, the proposed research involves two works, in which work 1 exhibits constraints over the prediction and monitoring of the air filter pressure drop, automatic cleaning, thermal efficiency, and inaccurate fuel control. While the work 2 involves issues with higher exergy destruction within the condenser and incomplete NOx reduction. Hence, to overcome these issues and to validate the two works, a novel Polynomial adaptive swarm Parallel Genetic Optimization PID (PAD-PID) controller and Nonlinear Bayesian Kalman Least Squares autoregressive exogenous (BK-NARX) controller-based models are proposed in this work. The novel PAD-PID controller aids in reducing the exergy destruction within the condenser and also maximizes the NOx reduction efficiency. Moreover, the novel BK-NARX controller effectively predicts the turbine performance and also responds to variations in exhaust gas temperature effectively. The defined work is compared with different conventional techniques, to identify its significance. The analyzation results show that both the controllers attains an overall Efficiency of 91 % and 91.1 %, Exergy Efficiency of about 60.5 % and 59 %, thermal Efficiency of about 69 % and 69.5 %, Energy destruction of 8 kW, NOx reduction of 0.98 kg/kW-h, and NOx concentration of 39.52, ensuring stable and accurate performance across all evaluated metrics.

Suggested Citation

  • Surase, Ravindra S. & Ramakrishna, Konijeti & Ramchandra P., Chopade, 2025. "Efficient Polynomial PID controller and nonlinear autoregressive with Exogenous for increasing the Efficiency of Combined Gas Turbine (CGT) Plant," Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225019760
    DOI: 10.1016/j.energy.2025.136334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225019760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    2. Mohammad Alsarayreh & Omar Mohamed & Mustafa Matar, 2022. "Modeling a Practical Dual-Fuel Gas Turbine Power Generation System Using Dynamic Neural Network and Deep Learning," Sustainability, MDPI, vol. 14(2), pages 1-25, January.
    3. Ibrahem, Ibrahem M.A. & Akhrif, Ouassima & Moustapha, Hany & Staniszewski, Martin, 2021. "Nonlinear generalized predictive controller based on ensemble of NARX models for industrial gas turbine engine," Energy, Elsevier, vol. 230(C).
    4. Zhen Wang & Liqiang Duan, 2021. "Thermoeconomic Optimization of Steam Pressure of Heat Recovery Steam Generator in Combined Cycle Gas Turbine under Different Operation Strategies," Energies, MDPI, vol. 14(16), pages 1-20, August.
    5. Hassan, Muhammed A. & Bailek, Nadjem & Bouchouicha, Kada & Nwokolo, Samuel Chukwujindu, 2021. "Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks," Renewable Energy, Elsevier, vol. 171(C), pages 191-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    2. Feng, Hailong & Liu, Bei & Xu, Maojun & Li, Ming & Song, Zhiping, 2024. "Model-based deduction learning control: A novel method for optimizing gas turbine engine afterburner transient," Energy, Elsevier, vol. 292(C).
    3. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.
    4. Rita Teixeira & Adelaide Cerveira & Eduardo J. Solteiro Pires & José Baptista, 2024. "Advancing Renewable Energy Forecasting: A Comprehensive Review of Renewable Energy Forecasting Methods," Energies, MDPI, vol. 17(14), pages 1-30, July.
    5. Li, Naiqing & Li, Longhao & Zhang, Fan & Jiao, Ticao & Wang, Shuang & Liu, Xuefeng & Wu, Xinghua, 2023. "Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model," Energy, Elsevier, vol. 277(C).
    6. Hassan, Muhammed A. & Al-Ghussain, Loiy & Ahmad, Adnan Darwish & Abubaker, Ahmad M. & Khalil, Adel, 2022. "Aggregated independent forecasters of half-hourly global horizontal irradiance," Renewable Energy, Elsevier, vol. 181(C), pages 365-383.
    7. Neshat, Mehdi & Nezhad, Meysam Majidi & Mirjalili, Seyedali & Garcia, Davide Astiaso & Dahlquist, Erik & Gandomi, Amir H., 2023. "Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy," Energy, Elsevier, vol. 278(C).
    8. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    9. Marek Borowski & Piotr Życzkowski & Klaudia Zwolińska & Rafał Łuczak & Zbigniew Kuczera, 2021. "The Security of Energy Supply from Internal Combustion Engines Using Coal Mine Methane—Forecasting of the Electrical Energy Generation," Energies, MDPI, vol. 14(11), pages 1-18, May.
    10. Gong, Jianqiang & Qu, Zhiguo & Zhu, Zhenle & Xu, Hongtao, 2025. "Parallel TimesNet-BiLSTM model for ultra-short-term photovoltaic power forecasting using STL decomposition and auto-tuning," Energy, Elsevier, vol. 320(C).
    11. Lioua Kolsi & Sameer Al-Dahidi & Souad Kamel & Walid Aich & Sahbi Boubaker & Nidhal Ben Khedher, 2022. "Prediction of Solar Energy Yield Based on Artificial Intelligence Techniques for the Ha’il Region, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    12. Zhai, Chao & He, Xinyi & Cao, Zhixiang & Abdou-Tankari, Mahamadou & Wang, Yi & Zhang, Minghao, 2025. "Photovoltaic power forecasting based on VMD-SSA-Transformer: Multidimensional analysis of dataset length, weather mutation and forecast accuracy," Energy, Elsevier, vol. 324(C).
    13. Ren, Siyue & Feng, Xiao & Yang, Minbo, 2022. "Cumulative solar exergy allocation in heat and electricity cogeneration systems," Energy, Elsevier, vol. 254(PC).
    14. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    15. Zulkeflee, Siti Asyura & Rohman, Fakhrony Sholahudin & Abd Sata, Suhairi & Aziz, Norashid, 2021. "Autoregressive exogenous input modelling for lipase catalysed esterification process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 325-339.
    16. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    17. Hassan, Muhammed A. & Khalil, Adel & Abubakr, Mohamed, 2021. "Selection methodology of representative meteorological days for assessment of renewable energy systems," Renewable Energy, Elsevier, vol. 177(C), pages 34-51.
    18. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    19. Sun, Fengpeng & Li, Longhao & Bian, Dunxin & Bian, Wenlin & Wang, Qinghong & Wang, Shuang, 2025. "Photovoltaic power prediction based on multi-scale photovoltaic power fluctuation characteristics and multi-channel LSTM prediction models," Renewable Energy, Elsevier, vol. 246(C).
    20. Abdulrahman Th. Mohammad & Wisam A. M. Al-Shohani, 2024. "Short-Term Prediction of the Solar Photovoltaic Power Output Using Nonlinear Autoregressive Exogenous Inputs and Artificial Neural Network Techniques Under Different Weather Conditions," Energies, MDPI, vol. 17(23), pages 1-16, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:327:y:2025:i:c:s0360544225019760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.