IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4991-d614351.html
   My bibliography  Save this article

Thermoeconomic Optimization of Steam Pressure of Heat Recovery Steam Generator in Combined Cycle Gas Turbine under Different Operation Strategies

Author

Listed:
  • Zhen Wang

    (Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, National Thermal Power Engineering & Technology Research Center, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Liqiang Duan

    (Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, National Thermal Power Engineering & Technology Research Center, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

The optimization of the steam parameters of the heat recovery steam generators (HRSG) of Combined Cycle Gas Turbines (CCGT) has become one of the important means to reduce the power generation cost of combined cycle units. Based on the structural theory of thermoeconomics, a thermoeconomic optimization model for a triple pressure reheat HRSG is established. Taking the minimization of the power generation cost of the combined cycle system as the optimization objective, an optimization algorithm based on three factors and six levels of orthogonal experimental samples to determine the optimal solution for the high, intermediate and low pressure steam pressures under different gas turbine (GT) operation strategies. The variation law and influencing factors of the system power generation cost with the steam pressure level under all operation strategies are analyzed. The research results show that the system power generation cost decreases as the GT load rate increases, T 4 plays a dominant role in the selection of the optimal pressure level for high pressure (HP) steam and, in order to obtain the optimum power generation cost, the IGV T3-650-F mode should be adopted to keep the T 4 at a high level under different GT load rates.

Suggested Citation

  • Zhen Wang & Liqiang Duan, 2021. "Thermoeconomic Optimization of Steam Pressure of Heat Recovery Steam Generator in Combined Cycle Gas Turbine under Different Operation Strategies," Energies, MDPI, vol. 14(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4991-:d:614351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carcasci, Carlo & Cosi, Lorenzo & Ferraro, Riccardo & Pacifici, Beniamino, 2017. "Effect of a real steam turbine on thermoeconomic analysis of combined cycle power plants," Energy, Elsevier, vol. 138(C), pages 32-47.
    2. Duan, Liqiang & Wang, Zhen & Guo, Yaofei, 2020. "Off-design performance characteristics study on ISCC system with solar direct steam generation system," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    2. Ren, Siyue & Feng, Xiao & Yang, Minbo, 2022. "Cumulative solar exergy allocation in heat and electricity cogeneration systems," Energy, Elsevier, vol. 254(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    2. Yang, Ting & Geng, Yinan & Tang, Zihui & Li, Fei & Liu, Yachuang & Li, Hao, 2023. "Active disturbance rejection coordinated control for integrated solar combined cycle system considering system inertia difference," Energy, Elsevier, vol. 282(C).
    3. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    4. Kler, Aleksandr M. & Zharkov, Pavel V. & Epishkin, Nikolai O., 2019. "Parametric optimization of supercritical power plants using gradient methods," Energy, Elsevier, vol. 189(C).
    5. Zuxian Zhang & Liqiang Duan & Zhen Wang & Yujie Ren, 2023. "Integration Optimization of Integrated Solar Combined Cycle (ISCC) System Based on System/Solar Photoelectric Efficiency," Energies, MDPI, vol. 16(8), pages 1-22, April.
    6. Kwon, Hyun Min & Moon, Seong Won & Kim, Tong Seop & Kang, Do Won, 2020. "Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling," Energy, Elsevier, vol. 207(C).
    7. Ma, Ning & Bu, Zhengkun & Fu, Yanan & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "An operation strategy and off-design performance for supercritical brayton cycle using CO2-propane mixture in a direct-heated solar power tower plant," Energy, Elsevier, vol. 278(PA).
    8. Bartnik, Ryszard & Hnydiuk-Stefan, Anna & Buryn, Zbigniew, 2020. "Thermodynamic and economic analysis of a gas turbine set coupled with a turboexpander in a hierarchical gas-gas system," Energy, Elsevier, vol. 190(C).
    9. Kwon, Hyun Min & Kim, Tong Seop & Sohn, Jeong Lak & Kang, Do Won, 2018. "Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller," Energy, Elsevier, vol. 163(C), pages 1050-1061.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4991-:d:614351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.