IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225017840.html
   My bibliography  Save this article

Quantification of performance degradation due to wind turbine aging: Estimating the reduction in annual energy production using the annual degradation rate

Author

Listed:
  • Kim, Daeyoung
  • Kim, Bumsuk

Abstract

Wind power plays a crucial role in reducing carbon emissions and combating climate change, holding a key position in the energy portfolios of many countries. However, alongside this growth, turbine aging has emerged. Turbine aging leads to performance degradation, increased maintenance costs, and reduced energy production efficiency. Despite this, standardized methods for accurately predicting power performance degradation and energy loss due to turbine aging remain insufficient. This study developed a method to quantify the Annual Degradation Rate (ADR) caused by turbine aging and applied it to operational wind farms to estimate the power curve and the corresponding decrease in Annual Energy Production (AEP). The results showed that the power curve prediction model had high predictive accuracy, with a relative error rate of less than 1.6 %. Additionally, AEP was found to decrease by 0.72 % annually due to turbine aging, equivalent to a reduction of 0.04 % per MW. Finally, ADR was assessed based on the aging rate of the turbines, classifying them into three categories: slow aging, normal aging, and accelerated aging. This method provides a systematic tool for analyzing and predicting wind turbine performance degradation, offering a practical metric for developing management and maintenance strategies.

Suggested Citation

  • Kim, Daeyoung & Kim, Bumsuk, 2025. "Quantification of performance degradation due to wind turbine aging: Estimating the reduction in annual energy production using the annual degradation rate," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225017840
    DOI: 10.1016/j.energy.2025.136142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Takanori Uchida & Tadasuke Yoshida & Masaki Inui & Yoshihiro Taniyama, 2021. "Doppler Lidar Investigations of Wind Turbine Near-Wakes and LES Modeling with New Porous Disc Approach," Energies, MDPI, vol. 14(8), pages 1-33, April.
    2. Kim, Dae-Young & Kim, Yeon-Hee & Kim, Bum-Suk, 2021. "Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear," Energy, Elsevier, vol. 214(C).
    3. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2018. "Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain," Renewable Energy, Elsevier, vol. 126(C), pages 640-651.
    4. Kim, Dae-Young & Kim, Bum-Suk, 2022. "Differences in wind farm energy production based on the atmospheric stability dissipation rate: Case study of a 30 MW onshore wind farm," Energy, Elsevier, vol. 239(PE).
    5. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    6. Sonja Germer & Axel Kleidon, 2019. "Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
    7. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    8. Hyun-Goo Kim & Jin-Young Kim, 2021. "Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement," Energies, MDPI, vol. 14(8), pages 1-12, April.
    9. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
    2. Davide Astolfi & Ravi Pandit & Ludovico Terzi & Andrea Lombardi, 2022. "Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis," Energies, MDPI, vol. 15(15), pages 1-17, July.
    3. Davide Astolfi & Ravi Pandit, 2022. "Wind Turbine Performance Decline with Age," Energies, MDPI, vol. 15(14), pages 1-4, July.
    4. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Christy Pérez & Michel Rivero & Mauricio Escalante & Victor Ramirez & Damien Guilbert, 2023. "Influence of Atmospheric Stability on Wind Turbine Energy Production: A Case Study of the Coastal Region of Yucatan," Energies, MDPI, vol. 16(10), pages 1-20, May.
    6. Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
    7. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    8. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2021. "Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis," Energies, MDPI, vol. 14(4), pages 1-25, February.
    9. Ahmed, Faraedoon & Foley, Aoife & Dowds, Carole & Johnston, Barry & Al Kez, Dlzar, 2024. "Assessing the engineering, environmental and economic aspects of repowering onshore wind energy," Energy, Elsevier, vol. 301(C).
    10. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    11. Benini, Giacomo & Cattani, Gilles, 2022. "Measuring the long run technical efficiency of offshore wind farms," Applied Energy, Elsevier, vol. 308(C).
    12. Jäger, Tobias & McKenna, Russell & Fichtner, Wolf, 2015. "Onshore wind energy in Baden-Württemberg: a bottom-up economic assessment of the socio-technical potential," Working Paper Series in Production and Energy 7, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    13. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    14. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    15. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    16. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    17. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    18. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    19. Fan, Shuanglong & Liu, Zhenqing, 2025. "Investigation of fully coupled wind field simulations in complex terrain wind farms considering automatic upwind control of turbines," Renewable Energy, Elsevier, vol. 239(C).
    20. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225017840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.